Input/Output Streams

Based on materials by Bjarne Stroustrup

www.stroustrup.com/Programming

Overview

B Fundamental I/O concepts

M Files

B Opening

B Reading and writing streams
mI/O errors

B Reading a single integer

Input and Output

data source:

mmput device |

device driver

,| iInput library

/

data destination:

device driver

output library

A 4

A 4

output device

The stream model

11 7
somewhere

* An ostream
— turns values of various types into character sequences

— sends those characters somewhere
* E.g., console, file, main memory, another computer

The stream model

11 7
somewhere

* Anistream
— turns character sequences into values of various types

— gets those characters from somewhere
* E.g., console, file, main memory, another computer

The stream model

* Reading and writing
— Of typed entities

¢ << (output) and >> (input) plus other operations
* Type safe

* Formatted
— Typically stored (entered, printed, etc.) as text

* But not necessarily (see binary streams in chapter 11)
— Extensible

* You can define your own I/O operations for your own types

— A stream can be attached to any I/O or storage device

Files

We turn our computers on and off
— The contents of our main memory is transient

We like to keep our data

— So we keep what we want to preserve on disks and similar
permanent storage

A file 1s a sequence of bytes stored 1n permanent storage
— A file has a name
— The data on a file has a format

We can read/write a file if we know its name and format

A file

At the fundamental level, a file is a sequence of bytes
numbered from 0 upwards

Other notions can be supplied by programs that interpret a
file format

— For example, the 6 bytes "123.45" might be interpreted as the
floating-point number 123.45

Files

e General model

< TOsysem

1ostreams :
Files Objects

(sequences of bytes) (of various types)

Files

 Toread a file

— We must know its name

— We must open it (for reading)

— Then we can read

— Then we must close it

* That is typically done implicitly

e To write a file

— We must name it

— We must open it (for writing)

* Or create a new file of that name
— Then we can write it
— We must close it

* That is typically done implicitly

Opening a file for reading

/...
int main()
{
cout << ""Please enter input file name: ";
string name;
cin >> name;
ifstream ist(name.c_str());// ifstream is an “input stream from a file”
/1 ¢_str() gives a low-level (“system”
Il or C-style) string from a C++ string

/] defining an ifstream with a name string
Il opens the file of that name for reading
if (list) error("'can’ t open input file "', name);
/...

Opening a file for writing

/...

cout << ""Please enter name of output file: ";

cin >> name;

ofstream ofs(name.c_str()); // ofstream is an “output stream from a file”
Il defining an ofstream with a name string

/] opens the file with that name for writing
if (lofs) error("'can’ t open output file "', name);
/...

Reading from a File

// reading a text file
#include <iostream>
#include <fstream>
#include <string>
using namespace std;

int main () {
string line;
ifstream myfile ("example.txt");
if (myfile.is_open()) {
while (myfile.good()) {
getline (myfile,line);
cout << line << end|;

}

myfile.close();
}
else

cout << "Unable to open file";
return O;

}

Reading from a file

Suppose a file contains a sequence of pairs
representing hours and temperature readings

0 60.7
1 60.6
260.3
3 59.22

The hours are numbered 0..23

No further format 1s assumed
— Maybe we can do better than that (but not just now)

Termination
— Reaching the end of file terminates the read
— Anything unexpected in the file terminates the read
e Fg,q

Reading a file

struct Reading { // a temperature reading
int hour; // hour after midnight [0:23]
double temperature;
Reading(int h, double t) :hour(h), temperature(t) { }

¥

vector<Reading> temps; // create a vector to store the readings

int hour;

double temperature;

while (ist >> hour >> temperature) { Il read
if (hour <0 || 23 <hour) error('"hour out of range'); // check
temps.push_back(Reading(hour,temperature)); I store

)

I/O error handling

* Sources of errors
— Human mistakes
— Files that fail to meet specifications
— Specifications that fail to match reality
— Programmer errors
— Etc.

* 1ostream reduces all errors to one of four states
— good() // the operation succeeded
— eof() // we hit the end of input (“end of file”)
— fail) // something unexpected happened
— bad() // something unexpected and serious happened

Sample integer read " failure”

Ended by “terminator character”
— 12345*
— State 1s fail()

Ended by format error
— 123456
— State 1s fail()

Ended by “end of file”
— 12345 endof file
— 12345 Control-Z (Windows)
— 12345 Control-D (Unix)
— State 1s eof()

Something really bad

— Disk format error
— State 1s bad()

I/O error handling

void fill vector(istream& ist, vector<int>& v, char terminator)
{ /] read integers from ist into v until we reach eof() or terminator
inti=0;
while (ist >> i) v.push_back(i); // read and store in v until “some failure”

if (ist.eof()) return; /I fine: we found the end of file
if (ist.bad()) error("ist is bad'); // stream corrupted; let’s get out of here!

if (ist.fail()) { // clean up the mess as best we can and report the problem
ist.clear(); Il clear stream state, so that we can look for terminator
char c;
ist>>c; Il read a character, hopefully terminator
if (¢ != terminator) { Il unexpected character
ist.unget(); // put that character back
ist.clear(ios_base::failbit); // set the state back to fail()

Throw an exception for bad()

/I How to make ist throw if it goes bad.
ist.exceptions(ist.exceptions()|ios_base::badbit);

Il can be read as
/I “setist’s exception mask to whatever it was plus badbit”

/| or as “throw an exception if the stream goes bad”

Given that, we can simplify our input loops by no longer checking for bad

Simplified mput loop

void fill_vector(istream& ist, vector<int>& v, char terminator)

{ /] read integers from ist into v until we reach eof() or terminator
inti=0;
while (ist >> i) v.push_back(i);
if (ist.eof()) return; // fine: we found the end of file

// not good() and not bad() and not eoff(), ist must be fail()

ist.clear(); // clear stream state
char c;
ist>>c; // read a character, hopefully terminator

if (c != terminator) { // ouch: not the terminator, so we must fail
ist.unget(); // maybe my caller can use that character
ist.clear(ios_base::failbit);// set the state back to fail()

}

Reading a single value

// first simple and flawed attempt:

cout << "Please enter an integer in the range 1 to 10 (inclusive):\n";
intn=0;
while (cin>>n) { // read
if (1<=n && n<=10) break; // check range
cout << "Sorry, "
<<n
<< " is not in the [1:10] range; please try again\n";

}

B Three kinds of problems are possible
B the user types an out-of-range value
B getting no value (end of file)

B the user types something of the wrong type (here, not an
integer)

Reading a single value

e What do we want to do 1n those three cases?
— handle the problem in the code doing the read?

— throw an exception to let someone else handle the
problem (potentially terminating the program)?

— 1gnore the problem?

— Reading a single value
* Is something we often do many times

« We want a solution that” s very simple to use

Handle everything: What a mess!

cout << "Please enter an integer in the range 1 to 10 (inclusive):\n"';
intn=0;
while (n==0) { // Spot the bug!
cin >> n;
if (cin) { // we got an integer, now check it:
if (1<=n & & n<=10) break;
cout <<"Sorry, " <<n << " is not in the [1:10] range; please try again\n"';
}
else if (cin.fail()) { Il we found something that wasn 't an integer
cin.clear(); I/ we’d like to look at the characters
cout << "Sorry, that was not a number; please try again\n'';
char ch;
while (cin>>ch & & !isdigit(ch)) ; Il throw away non-digits
if (!cin) error(''no input"); Il we didn’t find a digit: give up
cin.unget(); // put the digit back, so that we can read the number

}

else
error(''no input"); // eof or bad: give up

b
/l'if we get here nis in [1:10]

The mess: trying to do everything at once

* Problem: We have all mixed together
— reading values
— prompting the user for mput
— writing error messages
— skipping past “bad” input characters
— testing the input against a range

* Solution: Split it up 1nto logically separate parts

What do we want?

* What logical parts do we what?
— int get_int(int low, int high); // read an int in [low..high] from cin

— int get_int(); I/ read an int from cin
/] so that we can check the range int

— void skip_to_int(); // we found some “garbage” character
/] so skip until we find an int

* Separate functions that do the logically separate actions

Skip “garbage”

void skip to_int()
d

if (cin.fail()) { Il we found something that wasn’t an integer
cin.clear(); // we’d like to look at the characters
char ch;
while (cin>>ch) { Il throw away non-digits
if (isdigit(ch)) {
cin.unget(); // put the digit back,
Il so that we can read the number
return;

)
h

error(''no input"); // eof or bad: give up

)

Get (any) integer

int get_int()
{
intn=0;
while (true) §{
if (cin >> n) return n;
cout << "Sorry, that was not a number; please try again\n'';
skip to_int();
}

Get integer 1n range

int get_int(int low, int high)
d
cout << '""Please enter an integer in the range "
<<low << " to " << high << " (inclusive):\n"';
while (true) §{
int n = get_int();
if (low<=n & & n<=high) return n;
cout << "Sorry, "
<<n <<"is not in the ["" <<low <<':' << high
<< "] range; please try again\n"';

Use

int n = get_int(1,10);
cout << '"n: " <<n << endl;

int m = get_int(2,300);

cout <<'"m: " <<m << endl;

 Problem:

— The “dialog” is built into the read operations

What do we really want?

Il parameterize by integer range and “dialog”

int strength = get_int(1, 10,

"enter strength",

"Not in range, try again'');
cout << "strength: " << strength << endl;

int altitude = get_int(0, 50000,
""please enter altitude in feet",
"Not in range, please try again'');
cout << "altitude: " << altitude << '"ft. above sea level\n"';

« That’ s often the really important question
* Ask it repeatedly during software development
* As you learn more about a problem and its solution, your answers improve

Parameterize

int get_int(int low, int high, const string& greeting, const string& sorry)
{
cout << greeting << '": ["" <<low << ":' << high << "]\n"';
while (true) §{
int n = get_int();
if (low<=n & & n<=high) return n;
cout << sorry <<'":[" <<low <<':' << high << "]\n"";
j
)

 Incomplete parameterization: get_int() still “blabbers”
— “utility functions” should not produce their own error messages

— Serious library functions do not produce error messages at all
* They throw exceptions (possibly containing an error message)

User-detined output: operator<<()

* Usually trivial

ostream& operator<<(ostream& os, const Date& d)

{

return os <<'(' << d.year()
<<"' << d.month()

<<W'<< d.day() << ')';

* We often use several different ways of outputting a value

— Tastes for output layout and detail vary

Use

void do_some printing(Date d1, Date d2)
d

cout << dl; I/l means operator<<(cout,dl) ;

cout << dl << d2;
Il means (cout <<dl) << d2;
/Il means (operator<<(cout,dl)) << d2;
Il means operator<<((operator<<(cout,dl)), d2) ;

User-defined input: operator>>()

istream& operator>>(istream& is, Date& dd)

{

/I Read date in format: (year , month , day)

inty, d, m;

char chl, ch2, ch3, ch4;

is >> chl >>y >> ch2 >>m >> ch3 >> d >> ch4;

if (lis) return is; // we didn’t get our values, so just leave

if (ch1!="("|| ch2!="," || ch3!="," || ch4!=")") { // oops: format error
is.clear(ios_base::failbit); /] something wrong: set state to fail()
return is; /I and leave

j

dd = Date(y,Month(m),d); // update dd

return is; Il and leave with is in the good() state

Extra Material

Output Formatting

Observation

* As programmers we prefer regularity and simplicity
— But, our job is to meet people’ s expectations

* People are very fussy/particular/picky about the way
their output looks

— They often have good reasons to be

— Convention/tradition rules
* What does 123,456 mean?
* What does (123) mean?

— The world (of output formats) 1s weirder than you could
possibly imagine

Output formats

Integer values

— 1234 (decimal)

— 2322 (octal)

— 4d2 (hexadecimal)

Floating point values

— 1234.57 (general)

— 1.2345678e+03 (scientific)
— 1234.567890 (fixed)

Precision (for floating-point values)

— 1234.57 (precision 6)

— 1234.6 (precision 5)

Fields

— [12] (default for | followed by 12 followed by |)

— | 12| (12 1n a field of 4 characters)

Numerical Base Output

* You can change “base”
— Base 10 == decimal; digits: 0123456789
— Base 8 ==octal; digits: 01234567
— Base 16 == hexadecimal; digits: 012345678 9abcdef

// simple test:
cout << dec << 1234 << "\t(decimal)\n"
<< hex << 1234 << "\t(hexadecimal)\n"
<< oct << 1234 << "\t(octal)\n'';

Il The "\t' character is “tab” (short for “tabulation character”)

/] results:
1234 (decimal)
4d2 (hexadecimal)

2322 (octal)

“Sticky” Manipulators

* You can change “base”
— Base 10 == decimal; digits: 0123456789
— Base 8 ==octal; digits: 01234567
— Base 16 == hexadecimal; digits: 0123456 789abcdef

/] simple test:

cout << 1234 << "\t
<< hex << 1234 << "\t'
<< oct<<1234 <<"\n';
cout << 1234 <<"\n'; // the octal base is still in effect

/] results:
1234 4d2 2322

2322

Other Manipulators

* You can change “base”
— Base 10 == decimal; digits: 0123456789
— Base 8 ==octal; digits: 01234567
— Base 16 == hexadecimal; digits: 012345678 9abcdef

/] simple test:

cout << 1234 << "\t
<< hex << 1234 << '\t'
<< oct <<1234 << endl; /I \n'
cout << showbase << dec; // show bases
cout << 1234 <<"\t'
<< hex << 1234 << '\t'
<<oct<<1234 <<"\n';
/] results:
1234 4d2 2322
1234 0x4d2 02322

Floating-point Manipulators

* You can change floating-point output format
— general — iostream chooses best format using n digits (this is the default)
— scientific — one digit before the decimal point plus exponent; n digits after .

— fixed — no exponent; n digits after the decimal point

/] simple test:

cout << 1234.56789 << "\t\t(general)\n" // \t\t to line up columns
<< fixed << 1234.56789 << "\t(fixed)\n"
<< scientific << 1234.56789 << "\t(scientific)\n"';

/] results:

1234.57 (general)
1234.567890 (fixed)
1.234568¢+003 (scientific)

Precision Manipulator

Precision (the default is 6)

— general — precision 1s the number of digits
* Note: the general manipulator is not standard, just in std_lib_facilities.h

— scientific — precision is the number of digits after the . (dot)
— fixed — precision is the number of digits after the . (dot)

Il example:

cout << 1234.56789 << '\t' << fixed << 1234.56789 << '\t'
<< scientific << 1234.56789 << '\n';

cout << general << setprecision(5)
<< 1234.56789 << '"\t' << fixed << 1234.56789 << '\t
<< scientific << 1234.56789 << "\n';

cout << general << setprecision(8)
<<1234.56789 << '"\t' << fixed << 1234.56789 << '\t
<< scientific << 1234.56789 << "\n';

Il results (note the rounding):
1234.57 1234.567890 1.234568e+003
1234.6 1234.56789 1.23457e+003
1234.5679 1234.56789000 1.23456789¢+003

Output field width

* A width 1s the number of characters to be used for the next
output operation

— Beware: width applies to next output only (it doesn’ t “stick” like
precision, base, and floating-point format)

— Beware: output is never truncated to fit into field
* (better a bad format than a bad value)

/Il example:
cout << 123456 <<'|'<< setw(4) << 123456 <<'|'
<< setw(8) << 123456 <<'|' << 123456 << "|\n"';
cout << 1234.56 <<'|'<< setw(4) << 1234.56 <<'|'
<<setw(8) << 1234.56 <<'|' << 1234.56 << "|\n"';
cout << "asdfgh" <<'|'<< setw(4) << "asdfgh' <<'|'
<< setw(8) << "asdfgh" <<'|' << "asdfgh" << "[\n"";
I vesults:
123456|123456| 123456|123456|
1234.56/1234.56| 1234.56/1234.56|
asdfgh|asdfgh| asdfgh|asdfgh|

Extra Material

Files Modes

* At the fundamental level, a file 1s a sequence of
bytes numbered from 0 upwards

* Other notions can be supplied by programs that
interpret a " file format”™

— For example, the 6 bytes "123.45" might be interpreted
as the floating-point number 123.45

File open modes

By default, an ifstream opens its file for reading
By default, an ofstream opens its file for writing.
Alternatives:

— ios_base:
— ios_base:
— ios_base:
— ios_base:
— ios_base:
— ios_base:

:app // append (i.e., add to the end of the file)

:ate // “at end” (open and seek to end)

:binary // binary mode — beware of system specific behavior
:in /I for reading

:out // for writing

:trunc // truncate file to 0-length

A file mode is optionally specified after the name of the file:
— ofstream ofl(namel); // defaults to ios base::out
— ifstream ifl(name2); Il defaults to ios_base::in
— ofstream ofs(name, ios_base::app); // append rather than overwrite
— fstream fs(""'myfile", ios_base::in|ios_base::out); // both in and out

123 as
characters:

12345 as
characters:

123 as
binary:

12345 as
binary:

123456 as
characters:

123 456 as
characters:

Text vs. binary files

In binary files, we use
sizes to delimit values

In text files, we use
separation/termination

characters

Text vs. binary

* Use text when you can
— You can read 1t (without a fancy program)
— You can debug your programs more easily
— Text 1s portable across different systems

— Most information can be represented reasonably as text

* Use binary when you must

— E.g. image files, sound files

Binary files

int main()

{

Il use binary input and output

cout << '""Please enter input file name\n"';

string name;

cin >> name;

ifstream ifs(name.c_str(),ios_base::binary);// note: binary
if (!ifs) error(''can't open input file "', name);

cout << ""Please enter output file name\n"’;

cin >> name;

ofstream ofs(name.c_str(),ios_base::binary); // note: binary
if (1ofs) error(''can't open output file '",name);

/1 “binary” tells the stream not to try anything clever with the bytes

Binary files

vector<int> v;

/] read from binary file:

int i;

while (ifs.read(as_bytes(i),sizeof(int))) /] note: reading bytes
v.push_back(i);

/... do something with v ...

// write to binary file:

for(int i=0; i<v.size(); ++i)
ofs.write(as_bytes(v][i]),sizeof(int)); // note: writing bytes

return 0;

)

Il for now, treat as_bytes() as a primitive

Positioning 1n a filestream

Put Get
position: position:
A file:
fstream fs(name.c_str()); Il open for input and output

/...

fs.seekg(5); // move reading position (g’ for ‘get’) to 5 (the 6" character)
char ch;

fs>>ch; Il read and increment reading position

cout << "character[6] is "' << ch <<'(' <<int(ch) << ")\n"’;

fs.seekp(1); // move writing position ('p’ for put’) to 1 (the 2" character)
fs<<'y'; /] write and increment writing position

Positioning

* Whenever you can

— Use simple streaming

* Streams/streaming is a very powerful metaphor

 Write most of your code in terms of “plain” istream and ostream
— Positioning 1s far more error-prone

* Handling of the end of file position is system dependent and
basically unchecked

Extra Material

String Streams

String streams

A stringstream reads/writes from/to a string
rather than a file or a keyboard/screen

double str _to_double(string s)
I if possible, convert characters in s to floating-point value

d
istringstream is(s); // make a stream so that we can read from s
double d;
is >>d;
if (lis) error(''double format error');
return d;
;
double d1 = str _to_double("12.4"); /I testing

double d2 = str_to_double("1.34e-3");
double d3 = str_to_double(''twelve point three'); // will call error()

String streams

* Very useful for
— formatting into a fixed-sized space (think GUI)
— for extracting typed objects out of a string

Type vs. line

* Read a string
string name;
cin >> name; /I input: Dennis Ritchie
cout << name <<'\n'; // output: Dennis

e Read a line

string name;

getline(cin,name); // input: Dennis Ritchie

cout << name <<'\n'; // output: Dennis Ritchie
I/l now what?

/Il maybe:

istringstream ss(name);

ss>>first name;

ss>>second name;

Characters

* You can also read individual characters

char ch;
while (cin>>ch) { // read into ch, skipping whitespace characters
if (isalpha(ch)) {
Il do something
j
;

while (cin.get(ch)) { // read into ch, don’t skip whitespace characters
if (isspace(ch)) {
Il do something
]
else if (isalpha(ch)) {
Il do something else
]
]

Character classification functions

B If you use character input, you often need one or
more of these (from header <cctype>):

B isspace(c) // is ¢ whitespace? (', '\t', '\n’, etc.)

B isalpha(c) // is caletter? ('a'.'z', 'A"..'Z') note: not ' '
B isdigit(c) // is ¢ a decimal digit? ('0'".. '9')

B isupper(c)// is c an upper case letter?

B islower(c) // is ¢ a lower case letter?

B isalnum(c) // is ¢ a letter or a decimal digit?

Line-oriented mnput

* Prefer >> to getline()
— 1.e. avoid line-oriented input when you can

* People often use getline() because they see no alternative
— But it often gets messy

* When trying to use getline(), you often end up
— using >> to parse the line from a stringstream
— using get() to read individual characters

