Separate Compilation and
Makefiles

Separate Compilation

Slides created by David Mann, North Idaho College

from
Problem Solving with C++:
The Art of Programming, 4" edition
By Walter Savitch

9.1

C Separate Compilation

s C++ allows you to divide a program into parts
= Each part can be stored in a separate file

= Each part can be compiled separately

= A class definition can be stored separately from a
program.

« This allows you to use the class in multiple programs

Copyright © 2003 Pearson Education, Inc. Sllde 3

C ADT Review

s An ADT 1s a class defined to separate the
interface and the implementation

= All member variables are private

s The class definition along with the function and
operator declarations are grouped together as the
interface of the ADT

= Group the implementation of the operations together
and make them unavailable to the programmer
using the ADT

Slide 4

Copyright © 2003 Pearson Education, Inc.

@ The ADT Interface

m The interface of the ADT includes

= The class definition

= The declarations of the basic operations which can be
one of the following
« Public member functions
= Friend functions
= Ordinary functions

=« Overloaded operators

= The function comments

Copyright © 2003 Pearson Education, Inc. Sllde 5

C The ADT Implementation

e

= The implementation of the ADT includes

= The function definitions
= The public member functions
= The private member functions
= Non-member functions

= Private helper functions

= Overloaded operator definitions
= Member variables
= Other items required by the definitions

Copyright © 2003 Pearson Education, Inc. Sllde 6

© Separate Files

s In C++ the ADT interface and implementation
can be stored 1n separate files

s The interface file stores the ADT interface

= The implementation file stores the ADT
implementation

Copyright © 2003 Pearson Education, Inc. Sllde 7

@ A Minor Compromise

= The public ﬁart of the class definition 1s part of
the ADT interface

= The private part of the class definition 1s part of
the ADT implementation

s This would hide 1t from those using the ADT
s C++ does not allow splitting the public and

private parts of the class definition across files

= The entire class definition 1s usually in the
interface file

Copyright © 2003 Pearson Education, Inc. Sllde 8

C Case Study: DaigitalTime

= The interface file of the DigitalTime ADT class
contains the class definition

s The values of the class are:

= Time of day, such as 9:30, in 24 hour notation

= The public members are part of the interface

= The private members are part of the implementation

la mh

= The comments in the file should provide all the
details needed to use the ADT

Copyright © 2003 Pearson Education, Inc. Sllde 9

C Naming The Interface File

s The DigitalTime ADT interface 1s stored 1n a
file named dtime.h

= The .h suffix means this is a header file

= Interface files are always header files

» A program using dtime.h must include it using
an include directive

#include "dtime.h"

Display 9.1

Copyright © 2003 Pearson Education, Inc. Sllde 1 0

© Display 9.1 <{gas mex)

Interface File for DigitalTime

//Header file dtime.h: This is the INTERFACE for the class DigitalTime.
//Values of this type are times of day. The values are input and output in
//24-hour notation, as in 9:30 for 9:30 AM and 14:45 for 2:45 PM.

#i l'fc'l ude <iostream> ~———______ for the definition of the types

using namespace std; istream and ostream, which

- . are used as parameter types
class DigitalTime

{

public:
friend bool operator ==(const DigitalTime& timel, const DigitalTime& time2);
//Returns true if timel and time2 represent the same time;
//otherwise, returns false.

DigitalTime(int the_hour, int the_minute);
//Precondition: 0 <= the_hour <= 23 and 0 <= the_minute <= 59.
//Initializes the time value to the_hour and the_minute.

DigitalTime();
//Initializes the time value to 0:00 (which is midnight).

void advance(int minutes_added);
//Precondition: The object has a time value.
//Postcondition: The time has been changed to minutes_added minutes Tlater.

void advance(int hours_added, int minutes_added);
//Precondition: The object has a time value.
//Postcondition: The time value has been advanced
//hours_added hours plus minutes_added minutes.

friend istream& operator >>(istream& ins, DigitalTime& the_object);
//Overloads the >> operator for input values of type DigitalTime.
//Precondition: If ins is a file input stream, then ins has already been
//connected to a file.

friend ostream& operator <<(ostream& outs, const DigitalTime& the_object);
//0Overloads the << operator for output values of type DigitalTime.
//Precondition: If outs is a file output stream, then outs has already been
//connected to a file.

private: This is part of the implementation.

It is not part of the interface.

The word private indicates that

this is not part of the public interface.

int hour; B
int minute;

};
Copyright © 2003 Pearson Education, Inc. Sllde 11

© #include " " or <> ?

= To include a predefined header file use < and >

#include <iostream>

= <and > tells the compiler to look where the system
stores predefined header files

= To include a header file you wrote, use " and "
#include "'dtime.h"

= " and " usually cause the compiler to look
in the current directory for the header file

Copyright © 2003 Pearson Education, Inc. Slide 12

C The Implementation File

s Contains the definitions of the ADT functions

= Usually has the same name as the header file but
a different suffix

= Since our header file 1s named dtime.h, the
implementation file is named dtime.cpp

= Suffix depends on your system
(some use .cxx or .CPP)

Copyright © 2003 Pearson Education, Inc. Slide 13

@ include "dtime.h"

= The implementation file requires an include
directive to include the interface file:

#include "dtime.h"

Display 9.2 (1
Display 9.2
Display 9.2
Display 9.2 (4

Copyright © 2003 Pearson Education, Inc. Slide 14

(1/4)

m; Display 9.2

< Back Next>

Implementation File for DigitalTime (part 1 of 4)

Copyright © 2003 Pearson Education, Inc.

//Implementation file dtime.cpp (Your system may require some

//suffix other than .cpp): This is the IMPLEMENTATION of the ADT DigitalTime.
//The interface for the class DigitalTime is in the header file dtime.h.
#include <iostream>

#include <cctype>

#include <cstdlib>

#include "dtime.h"

using namespace std;

//These FUNCTION DECLARATIONS are for use in the definition of
//the overloaded input operator >>:

void read_hour(istream& ins, int& the_hour);

//Precondition: Next input in the stream ins is a time in 24-hour notation,
//T1ike 9:45 or 14:45.

//Postcondition: the_hour has been set to the hour part of the time.

//The colon has been discarded and the next input to be read is the minute.

void read_minute(istream& ins, int& the_minute);
//Reads the minute from the stream ins after read_hour has read the hour.

int digit_to_int(char c);
//Precondition: c is one of the digits ’0’ through ’9’.
//Returns the integer for the digit; for example, digit_to_int(’3’) returns 3.

bool operator ==(const DigitalTime& timel, const DigitalTime& time2)

{

return (timel.hour == time2.hour && timel.minute == time2.minute);

}

//Uses iostream and cstdlib:
DigitalTime::DigitalTime(int the_hour, int the_minute)

{
if (the_hour < 0 || the_hour > 23 || the_minute < 0 || the_minute > 59)
{
cout << "Illegal argument to DigitalTime constructor.";
exit(1l);
}

Slide 15

m; Display 9.2
(2/4) <Back Next

Implementation File for DigitalTime (part 2 of 4)

else

{
hour = the_hour;
minute = the_minute;

}
}
DigitalTime::DigitalTime() : hour(0), minute(0)
{
//Body intentionally empty.
}
void DigitalTime::advance(int minutes_added)
{
int gross_minutes = minute + minutes_added;
minute = gross_minutes%60;
int hour_adjustment = gross_minutes/60;
hour = Chour + hour_adjustment)%24;
}
void DigitalTime: :advance(int hours_added, int minutes_added)
{
hour = Chour + hours_added)%24;
advance(minutes_added);
}

//Uses iostream:
ostream& operator <<(ostream& outs, const DigitalTime& the_object)

{
outs << the_object.hour << ’:’;
if (the_object.minute < 10)
outs << ’0’;
outs << the_object.minute;
return outs;

Copyright © 2003 Pearson Education, Inc. Sllde 1 6

Display 9.2
(3/4)

< Back | | Next

Implementation File for DigitalTime (part 3 of 4)

//Uses iostream:
istream& operator >>(istream& ins, DigitalTime& the_object)

{
read_hour(ins, the_object.hour);
read_minute(ins, the_object.minute);
return 1ins;

}

int digit_to_int(char c)

{
return (int(c) - int(C’0’));

}

//Uses iostream, cctype, and cstdlib:
void read_minute(istream& ins, 7nt& the_minute)

{
char cl, c2;
ins >> cl >> c2;
if (1(isdigit(cl) && isdigit(c2)))
{
cout << "Error illegal input to read_minute\n";
exit(1);
}
the_minute = digit_to_int(cl)*10 + digit_to_int(c2);
if (the_minute < 0 || the_minute > 59)
{
cout << "Error illegal input to read_minute\n";
exit(l);
}
}

Copyright © 2003 Pearson Education, Inc. Sllde 1 7

Display 9.2
(4/4)

< Back | | Next

Implementation File for DigitalTime (part 4 of 4)

//Uses iostream, cctype, and cstdlib:
void read_hour(istream& ins, int& the_hour)

{
char cl, c2;
ins >> cl >> c2;
if (1(disdigit(cl) && (isdigit(c2) || €2 == ":")))
{
cout << "Error illegal input to read_hour\n";
exit(l);
}
if (isdigit(cl) && c2 == ":’)
{
the_hour = digit_to_int(cl);
}
else //(isdigit(cl) && isdigit(c2))
{
the_hour = digit_to_int(cl)*10 + digit_to_int(c2);
ins >> c2;//discard ’:’
if (c2 1= ":7)
{
cout << "Error illegal input to read_hour\n";
exit(l);
}
}
if (the_hour < 0 || the_hour > 23)
{
cout << "Error illegal input to read_hour\n";
exit(l);
}
}

Copyright © 2003 Pearson Education, Inc. Shdels

@ The Apphcatlon File

= The Apphcatlon file 1s the file that contains the
program that uses the ADT

s [t 1s also called a driver file

s Must use an include directive to include the
interface file:
#include "dtime.h"

Display 9.3

Copyright © 2003 Pearson Education, Inc. Slide 1 9

C Display 9.3 ¢san mex)

Application File Using DigitalTime

//Application file timedemo.cpp (your system may require some suffix
//other than .cpp): This program demonstrates use of the class DigitalTime.
#include <iostream>

#include "dtime.h"

using namespace std;

int main()

{
DigitalTime clock, old_clock;
cout << "Enter the time in 24-hour notation: ";
cin >> clock;
old_clock = clock;
clock.advance(15);
if (clock == old_clock)
cout << "Something is wrong.";
cout << "You entered " << old_clock << endl;
cout << "15 minutes later the time will be "
<< clock << endl;
clock.advance(2, 15);
cout << "2 hours and 15 minutes after that\n"
<< "the time will be "
<< clock << endl;
return 0;
}

Sample Dialogue

Enter the time in 24-hour notation: 11:15
You entered 11:15

15 minutes Tater the time will be 11:30

2 hours and 15 minutes after that

the time will be 13:45

Copyright © 2003 Pearson Education, Iric: Sllde 20

C Running The Program

= Basic steps required to run a program:
(Details vary from system to system!)

= Compile the implementation file
= Compile the application file

= Link the files to create an executable program using
a utility called a linker

« Linking 1s often done automatically

Copyright © 2003 Pearson Education, Inc. Slide 2 1

@ Compile dtime.h ?

= The interface file 1s not compiled separately

= The preprocessor replaces any occurrence of
#include "dtime.h" with the text of dtime.h before
compiling

= Both the implementation file and the
application file contain #include "dtime.h"

= The text of dtime.h is seen by the compiler in each of
these files

= There 1s no need to compile dtime.h separately

Copyright © 2003 Pearson Education, Inc. Sllde 22

@ Why Three Files?

s Using separate files permits

= The ADT to be used in other programs without
rewriting the definition of the class for each

= Implementation file to be compiled once even
if multiple programs use the ADT

= Changing the implementation file does not
require changing the program using the ADT

Copyright © 2003 Pearson Education, Inc. Sllde 23

@ Reusable Components

= An ADT coded in separate files can be used
over and over

= The reusability of such an ADT class

= Saves effort since it does not need to be
= Redesigned
= Recoded
= Retested

= Is likely to result in more reliable components

Copyright © 2003 Pearson Education, Inc. Sllde 24

C Multiple Classes

= A program may use several classes

s Each could be stored in its own interface and
implementation files

= Some files can "include" other files, that include still others

= It 1s possible that the same interface file could be
included 1n multiple files

s C++ does not allow multiple declarations of a class

= The #ifndef directive can be used to prevent
multiple declarations of a class

Copyright © 2003 Pearson Education, Inc. Sllde 25

C Introduction to #ifndef

= To prevent multiple declarations of a class,
we can use these directives:
= #define DTIME_H

adds DTIME H to a list indicating DTIME H has
been seen

n #ifndef DTIME H
checks to see if DTIME H has been defined

s #endif
If DTIME_H has been defined, skip to #endif

Copyright © 2003 Pearson Education, Inc. Sllde 26

© Using #ifndef

e

- C{JHSldCI‘ this code 1n the interface file:

#itndet DTIME_ H

#define DTIME _H
< The DigitalTime class

definition goes here>
#endif

= The first time a #include "dtime.h" 1s found,
DTIME H and the class are defined

= The next time a #include "dtime.h" 1s found,
all lines between #1fndef and #endif are skipped

false

Copyright © 2003 Pearson Education, Inc. Sllde 27

@ wWhy DTIME H?

= DTIME H 1s the normal convention for
creating an 1dentifier to use with ifndef

= It is the file name 1n all caps
= Use' 'instead of'.'

= You may use any other identifier, but will make
your code more difficult to read

Display 9.4

Copyright © 2003 Pearson Education, Inc. Slide 28

© Display 9.4 (s mex)

Avoiding Multiple Definitions of a Class

//Header file dtime.h: This is the INTERFACE for the class DigitalTime.
//Values of this type are times of day. The values are input and output 1in
//24-hour notation, as in 9:30 for 9:30 AM and 14:45 for 2:45 PM.

#ifndef DTIME H
#define DTIME_H

#include <iostream>
using namespace std;

class DigitalTime

{

<The definition of the class DigitalTime is the same as in Display 9.1.>

}s
#endif //DTIME H

Copyright © 2003 Pearson Education, Inc. Sllde 29

© Defining Libraries

= You can create your own libraries of functions

= You do not have to define a class to use separate
files

= If you have a collection of functions...
= Declare them 1n a header file with their comments
= Define them in an implementation file

= Use the library files just as you use your class interface
and implementation files

Copyright © 2003 Pearson Education, Inc. Sllde 30

Makefiles

Based on slides by George Bebis (U Nevada, Reno)

31

Makefiles

» Provide a way for separate compilation.

» Describe the dependencies among the project files.
» The make utility.

Compiler

Asggembler Linker

Executable

Using makefiles

Naming:
» makefile or Makefile are standard
» other name can be also used

Running make

make

make —-f filename -—ifthe name of your fileis not
“makefile” or “Makefile”

make target name -ifyou wantto make a target that is not
the first one

Sample makefile

> Makefiles main element is called a rule:

target : dependencies

TAB commands #shell commands
Example:

my prog : eval.o main.o

g++ -0 my prog eval.o main.o

eval.o : eval.c eval.h
g++ —-c eval.c

main.o : malin.c eval.h
gt+ —-Cc main.c

-0 to specify executable file name
-c to compile only (no linking)

Variables

The old way (no variables) A new \

vay (using variables)

my prog : eval.o main.o

g++ -0 my prog eval.o main.o
eval.o : eval.c eval.h

g++ -¢c —g eval.c
main.o : main.c eval.h

g++ -¢c —g main.c

C = g++
OBJS = eval.o main.o
HDRS = eval.h

my prog : eval.o main.o

$(C) -o my prog $(OBJS)
eval.o : eval.c

$(C) —c —-g eval.c
main.o : main.c

$(C) -¢c -g main.c
$ (OBJS) : $ (HDRS)

Defining variables on the command line:

Take precedence over variables defined in the makefile.

make C=cc

Implicit rules

» Implicit rules are standard ways for making one type of file from
another type.

» There are numerous rules for making an .o file — from a .cfile, a .p
file, etc. make applies the first rule it meets.

» If you have not defined a rule for a given object file, make will
apply an implicit rule for it.

Example:
Our makefile The way ma ke understands it
my prog : eval.o main.o
my prog : eval.o main.o $(C) -o my prog $(OBJS)
$(C) -o my_prog $(OBJS) $ (OBJS) : $ (HEADERS)

$ (OBJS) : $ (HEADERS) — » | eval.o : eval.c

$S(C) -c eval.c

- main.o : main.c

$(C) -c main.c

Automatic variables

Automatic variables are used to refer to specific part of rule
components.

target : dependencies
TAB commands #shell commands
eval.o : eval.c eval.h

g++ —-c eval.c

S@ - The name of the target of the rule (eval.o).
S< - The name of the first dependency (eval.c).
S~ - The names of all the dependencies (eval.c eval.h).

S? -The names of all dependencies that are newer than the target

Defining implicit rules

$.0 : %.C
$(C) -c —g $<

C = g++
OBJS = eval.o main.o
HDRS = eval.h

my prog : eval.o main.o

$(C) -o my prog $(OBJS)
$ (OBJS) : $ (HDRS)

Avoiding implicit rules - empty commands
target: ; #Implicit rules will not apply for this target.

ma ke options

ma ke options:

—-f filename — when the makefile name is not standard

-t - (touch) mark the targets as up to date
—-gq - (question) are the targets up to date, exits with O if true
-n - print the commands to execute but do not execute them

/ -t, —-qgq, and -n, cannot be used together/

-s - silent mode

-k - keep going — compile all the prerequisites even if not able
to link them !

Phony targets

Phony targets:

Targets that have no dependencies. Used only as names for
commands that you want to execute.

clean : .PHONY : clean

rm 5 (OBJS) Of clean:

rm S (OBJS)
To invoke it;: make clean

Typical phony targets:
all —make all the top level targets

.PHONY : all
all: my progl my progZ

clean —delete all files that are normally created by make
print — print listing of the source files that have changed

VPATH

> VPATH variable — defines directories to be searched if a file is not
found in the current directory.

VPATH = dir : dir ..
/ VPATH = src:../headers /

» vpath directive (lower case!) — more selective directory search:

vpath pattern directory
/ vpath %$.h headers /

» GPATH:

GPATH -if you want targets to be stored in the same directory as
their dependencies.

Variable modifiers

C = g++
OBJS = eval.o main.o
SRCS = $(OBJS, .o=.c) #r01

my prog : $(OBJS)
$(C) -g -c §*

.0 : %.C
S(C) -g -c S<

S (SRCS) : eval.h

Conditionals (directives)

Possible conditionals are:
1f 1feq 1fneq 1fdef 1fndef

All of them should be closed with endif.
Complex conditionals may use elif and else.

Example:

libs for gcc = -lgnu
normal libs =
ifeq (S (CC),gcc)

libs=$ (libs for gcc) #no tabs at the beginning
else
libs=$ (normal 1libs) #no tabs at the beginning

endif

