
K-D Trees

Based on materials by Dennis Frey, Yun Peng,
Jian Chen, Daniel Hood, and Jianping Fan

2

K-D Tree
n  Introduction

q  Multiple dimensional data
n  Range queries in databases of multiple keys:

 Ex. find persons with
 34 ≤ age ≤ 49 and $100k ≤ annual income ≤ $150k

n  GIS (geographic information system)
n  Computer graphics

q  Extending BST from one dimensional to k-dimensional
n  It is a binary tree
n  Organized by levels (root is at level 0, its children level 1, etc.)
n  Tree branching at level 0 according to the first key, at level 1

according to the second key, etc.

n  KdNode
q  Each node has a vector of keys, in addition to the

pointers to its subtrees.

3

K-D Tree

n  A 2-D tree example

K-D tree decomposition for the point
set (2,3), (5,4), (9,6), (4,7), (8,1), (7,2).

4

5

n  Insert
q  A 2-D item (vector of size 2 for the two keys) is inserted
q  New node is inserted as a leaf
q  Different keys are compared at different levels

n  Find/print with an orthogonal (rectangular) range

q  exact match: insert (low[level] = high[level] for all levels)
q  partial match: (query ranges are given to only some of

the k keys, other keys can be thought in range ± ∞)

2-D Tree Operations

low[0]
low[1]

high[0]

high[1]

key[1]

key[0]

7

Insert (55, 62) into the following 2-D
tree

53, 14

27, 28 65, 51

31, 85 30, 11 70, 3 99, 90

29, 16 40, 26 7, 39 32, 29 82, 64

73, 75 15, 61
38, 23 55,62

55 > 53, move right

62 > 51, move right

55 < 99, move left

62 < 64, move left

Null pointer, attach

10

printRange in a 2-D Tree

53, 14

27, 28

31, 85 30, 11

40, 26 32, 29

38, 23

65, 51

70, 3 99, 90

82, 64

73, 75

29, 16 7, 39

15, 61

low[0] = 35, high[0] = 40;

In range? If so, print cell
low[level]<=data[level]->search t.left

high[level] >= data[level]-> search t.right

This sub-tree is never searched.
Searching is “preorder”. Efficiency is obtained
by “pruning” subtrees from the search. low[1] = 23, high[1] = 30;

11

3-D Tree example

20,12,30

15,18,27 40,12,39

17,16,22 19,19,37 22,10,33 25,24,10

16,15,20

12,14,20 18,16,18

24,9,30 50,11,40

D B C A

X < 20 X > 20

Y < 18
Y > 18

Z < 22

X > 16 X < 16

Y > 12 Y < 12

Z < 33
Z > 33

What property (or properties) do the nodes in
the subtrees labeled A, B, C, and D have?

3-D Tree

13

K-D Operations

n  Modify the 2-D insert code so that it works for
K-D trees.

n  Modify the 2-D printRange code so that it
works for K-D trees.

14

K-D Tree Performance
n  Insert

q  Average and balanced trees: O(lg N)
q  Worst case: O(N)

n  Print/search with a square range query
q  Exact match: same as insert (low[level] =

high[level] for all levels)
q  Range query: for M matches

n  Perfectly balanced tree:
 K-D trees: O(M + kN (1-1/k))

 2-D trees: O(M + √N)
n  Partial match

 in a random tree: O(M + Nα) where α = (-3 + √17) / 2

15

K-D Tree Performance
n  More on range query in a perfectly balanced 2-D tree:

q  Consider one boundary of the square (say, low[0])
q  Let T(N) be the number of nodes to be looked at with respect

to low[0]. For the current node, we may need to look at
n  One of the two children (e.g., node (27, 28)), and
n  Two of the four grand children (e.g., nodes (30, 11) and

(31, 85)).
q  Write T(N) = 2 T(N/4) + c, where N/4 is the size of subtrees 2

levels down (we are dealing with a perfectly balanced tree
here), and c = 3.

q  Solving this recurrence equation:
 T(N) = 2T(N/4) + c = 2(2T(N/16) + c) + c
 …
 = c(1 + 2 + ⋅⋅⋅ + 2^(log4 N) = 2^(1+ log4 N) – 1

 = 2*2^(log4 N) – 1 = 2*2^ ((log2 N)/2) – 1 = O(√N)

16

K-D Tree Remarks
n  Remove

q  No good remove algorithm beyond lazy
deletion
(mark the node as removed)

n  Balancing K-D Tree
q  No known strategy to guarantee a balanced 2-

D tree
q  Periodic re-balance

n  Extending 2-D tree algorithms to k-D
q  Cycle through the keys at each level

Jaruloj Chongstitvatana	
 k-d trees	
 17	

Insertion

20,31

36,10

31,40

15,15

40,36

6,6

25,16

Jaruloj Chongstitvatana	
 k-d trees	
 18	

Exact Search

20,31

36,10

31,40

15,15

40,36

6,6

25,16

(40, 36)

Jaruloj Chongstitvatana	
 k-d trees	
 19	

Range search

20,31

36,10

31,40

15,15

40,36

6,6

25,16

Jaruloj Chongstitvatana	
 k-d trees	
 20	

Deletion

20,31

36,10

38,40

15,15

40,36 32,16

28,5

45,8

Delete the blue point Copy the pink point up

Jaruloj Chongstitvatana	
 k-d trees	
 21	

Deletion

36,10

38,40

15,15

40,36 32,16 45,8

Delete the old pink point

28,5

Applications

n  Query processing in sensor networks
n  Nearest-neighbor searchers
n  Optimization
n  Ray tracing
n  Database search by multiple keys

Examples of applications

0 100 Km.

Population, ’96

Population Distribution in Alberta, 1996 census

Progressive Meshes

Developed by Hugues Hoppe, Microsoft Research Inc. Published
first in SIGGRAPH 1996.

Terrain visualization applications

Geometric subdivision

Problems with Geometric Subdivisions

Real-time Optimally Adapting Meshes

27

ROAM principle

The basic operating principle of ROAM

Parti-Game Reinforcement Learning

n  http://www.autonlab.org/autonweb/14745/version/1/part/
4/data/partigame-demo.mpg

30

Decision Tree

n  Database indexing structure is built for decision
making and tries to make the decision as fast as
possible!

Color = Green?

Size = Big?

watermelon Size = Medium?

apple
Grape

Color = Yellow?

Shape = Round?

Size = Big? banana

grapefruit lemon

Size = small?

Taste = sweet?

cherry grape

apple

yes

yes
no

yes no

no

yes no

yes no

yes no

yes no

yes no

