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K-D Tree 
n  Introduction 

q  Multiple dimensional data 
n  Range queries in databases of multiple keys:  

 Ex. find persons with 
       34 ≤ age ≤ 49 and $100k ≤ annual income ≤ $150k 

n  GIS (geographic information system) 
n  Computer graphics 

q  Extending BST from one dimensional to k-dimensional 
n  It is a binary tree 
n  Organized by levels (root is at level 0, its children level 1, etc.) 
n  Tree branching at level 0 according to the first key, at level 1 

according to the second key, etc. 

n  KdNode  
q  Each node has a vector of keys, in addition to the 

pointers to its subtrees. 
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K-D Tree 

n  A 2-D tree example  



K-D tree decomposition for the point 
set (2,3), (5,4), (9,6), (4,7), (8,1), (7,2). 
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n  Insert 
q  A 2-D item (vector of size 2 for the two keys) is inserted 
q  New node is inserted as a leaf 
q  Different keys are compared at different levels 

n  Find/print with an orthogonal (rectangular) range 
 

q  exact match: insert (low[level] = high[level] for all levels) 
q  partial match: (query ranges are given to only some of 

the k keys, other keys can be thought in range ± ∞) 

2-D Tree Operations 

low[0] 
low[1] 

high[0] 

high[1] 

key[1] 

key[0] 
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Insert (55, 62) into the following 2-D 
tree 

53, 14 

27, 28 65, 51 

31, 85 30, 11 70, 3 99, 90 

29, 16 40, 26 7, 39 32, 29 82, 64 

73, 75 15, 61 
38, 23 55,62 

55 > 53, move right 

62 > 51, move right 

55 < 99, move left 

62 < 64, move left 

Null pointer, attach 
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printRange in a 2-D Tree 

53, 14 

27, 28 

31, 85 30, 11 

40, 26 32, 29 

38, 23 

65, 51 

70, 3 99, 90 

82, 64 

73, 75 

29, 16 7, 39 

15, 61 

low[0] = 35, high[0] = 40; 

In range? If so, print cell 
low[level]<=data[level]->search t.left 

high[level] >= data[level]-> search t.right 

This sub-tree is never searched. 
Searching is “preorder”. Efficiency is obtained 
by “pruning” subtrees from the search. low[1] = 23, high[1] = 30; 
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3-D Tree example 

20,12,30 

15,18,27 40,12,39 

17,16,22 19,19,37 22,10,33 25,24,10 

16,15,20 

12,14,20 18,16,18 

24,9,30 50,11,40 

D B C A 

X < 20 X > 20 

Y < 18 
Y > 18 

Z < 22 

X > 16 X < 16 

Y > 12 Y < 12 

Z < 33 
Z > 33 

What property (or properties) do the nodes in 
the subtrees labeled A, B, C, and D have? 



3-D Tree 
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K-D Operations 

n  Modify the 2-D insert code so that it works for 
K-D trees. 

n  Modify the 2-D printRange code so that it 
works for K-D trees. 
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K-D Tree Performance 
n  Insert 

q  Average and balanced trees: O(lg N) 
q  Worst case: O(N) 

n  Print/search with a square range query 
q  Exact match: same as insert (low[level] = 

high[level] for all levels) 
q  Range query: for M matches 

n  Perfectly balanced tree:  
 K-D trees: O(M + kN (1-1/k) ) 

     2-D trees:  O(M + √N)  
n  Partial match 

 in a random tree: O(M + Nα) where α = (-3 + √17) / 2 
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K-D Tree Performance 
n  More on range query in a perfectly balanced 2-D tree: 

q  Consider one boundary of the square (say, low[0]) 
q  Let T(N) be the number of nodes to be looked at with respect 

to low[0]. For the current node, we may need to look at 
n  One of the two children (e.g., node (27, 28)), and 
n  Two of the four grand children (e.g., nodes (30, 11) and 

(31, 85)). 
q  Write T(N) = 2 T(N/4) + c, where N/4 is the size of subtrees 2 

levels down (we are dealing with a perfectly balanced tree 
here), and c = 3. 

q  Solving this recurrence equation: 
   T(N) = 2T(N/4) + c = 2(2T(N/16) + c) + c  
            … 
             = c(1 + 2 + ⋅⋅⋅ + 2^(log4 N) = 2^(1+ log4 N) – 1 

          = 2*2^(log4 N) – 1 = 2*2^ ((log2 N)/2) – 1 = O(√N) 
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K-D Tree Remarks 
n  Remove 

q  No good remove algorithm beyond lazy 
deletion  
(mark the node as removed)  

n  Balancing K-D Tree 
q  No known strategy to guarantee a balanced 2-

D tree 
q  Periodic re-balance 

n  Extending 2-D tree algorithms to k-D 
q  Cycle through the keys at each level 
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Insertion 

20,31 

36,10 

31,40 

15,15 

40,36 

6,6 

25,16 
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Exact Search 

20,31 

36,10 

31,40 

15,15 

40,36 

6,6 

25,16 

(40, 36) 
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Range search 

20,31 

36,10 

31,40 

15,15 

40,36 

6,6 

25,16 
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Deletion 

20,31 

36,10 

38,40 

15,15 

40,36 32,16 

28,5 

45,8 

Delete the blue point Copy the pink point up 



Jaruloj Chongstitvatana	
 k-d trees	
 21	


Deletion 

36,10 

38,40 

15,15 

40,36 32,16 45,8 

Delete the old pink point 

28,5 



Applications 

n  Query processing in sensor networks 
n  Nearest-neighbor searchers 
n  Optimization 
n  Ray tracing 
n  Database search by multiple keys 



Examples of applications 

0 100 Km.

Population, ’96

Population Distribution in Alberta, 1996 census



Progressive Meshes 

Developed by Hugues Hoppe, Microsoft Research Inc. Published 
first in SIGGRAPH 1996.    



Terrain visualization applications 



Geometric subdivision 

Problems with Geometric Subdivisions 



Real-time Optimally Adapting Meshes 
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ROAM principle 

The basic operating principle of ROAM  





Parti-Game Reinforcement Learning 

n  http://www.autonlab.org/autonweb/14745/version/1/part/
4/data/partigame-demo.mpg 
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Decision Tree 

n  Database indexing structure is built for decision 
making and tries to make the decision as fast as 
possible! 

Color = Green? 

Size = Big? 

watermelon Size = Medium? 

apple 
Grape 

Color = Yellow? 

Shape = Round? 

Size = Big? banana 

grapefruit lemon 

Size = small? 

Taste = sweet? 

cherry grape 

apple 

yes 

yes 
no 

yes no 

no 

yes no 

yes no 

yes no 

yes no 

yes no 


