Design patterns

Based on slides by Glenn D. Blank

Definitions

A pattern is a recurring solution to a standard problem, in a context.

Christopher Alexander, a professor of architecture...
— Why would what a prof of architecture says be relevant to software?

— “A pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem,

in such a way that you can use this solution a million times over, without
ever doing it the same way twice.

Jim Coplein, a software engineer:)
| like to relate this definition to dress patterns...

— What are dress patterns?

— “...1could tell you how to make a dress by specifying the route of
a scissors through a piece of cloth in terms of angles and lengths of cut. Or,
| could give you a pattern. Reading the specification, you would have no
idea what was being built or if you had built the right thing when you were
finished. The pattern foreshadows the product: it is the rule for making the
thing, but it is also, in many respects,
the thing itself.”

Patterns in engineering

* How do other engineers find and use patterns?

— Mature engineering disciplines have handbooks
describing successful solutions to known problems

— Automobile designers don't design cars from scratch
using the laws of physics

— Instead, they reuse standard designs with successful
track records, learning from experience

— Should software engineers make use of patterns? Why?
— “Be sure that you make everything according to the pattern
I have shown you here on the mountain.” Exodus 25:40.
* Developing software from scratch is also expensive
— Patterns support reuse of software architecture and design

The “gang of four” (GoF)

* Erich Gamma, Richard Helm, Ralph Johnson
& John Vlissides (Addison-Wesley, 1995)

— Design Patterns book catalogs 23 different patterns as solutions to
different classes of problems, in C++ & Smalltalk

— The problems and solutions are broadly applicable, used by many
people over many years

— What design pattern did we discover with the Undo problem?
 Why is it useful to learn about this pattern?

e Patterns suggest opportunities for reuse in analysis, design and
programming

— GOF presents each pattern in a structured format

* What do you think of this format? Pros and cons?

Elements of Design Patterns

* Design patterns have 4 essential elements:
— Pattern name: increases vocabulary of designers
— Problem: intent, context, when to apply
— Solution: UML-like structure, abstract code
— Consequences: results and tradeoffs

Model View Controller (MVC)

MVC slides by Rick Mercer with a wide
variety of others

Model/View/Controller

 The intent of MVC is to keep neatly separate objects into
one of tree categories
— Model

 The data, the business logic, rules, strategies, and so on
— View

« Displays the model and usually has components that allows user to edit
change the model

— Controller
» Allows data to flow between the view and the model
* The controller mediates between the view and model

Sun says

* Model-View-Controller ("MVC") is the recommended
architectural design pattern for interactive applications

« MVC organizes an interactive application into three
separate modules:

— one for the application model with its data representation and
business logic,

— the second for views that provide data presentation and user
input, and

— the third for a controller to dispatch requests and control flow.

Sun continued

* Most Web-tier application frameworks use some
variation of the MVC design pattern

» The MVC (architectual) design pattern provides a
host of design benefits

Java Server Pages

* Model 2 Architecture to serve dynamic content
— Model: Enterprise Beans with data in the DBMS

 JavaBean: a class that encapsulates objects and can be displayed graphically
— Controller: Servlets create beans, decide which JSP to return, do the bulk
of the processing
— View: The JSPs generated in the presentation layer (the browser)

PP Enterprise Servers/
Application Server Data Sources

10

OO-tips Says

« The MVC paradigm is a way of breaking an application, or
even just a piece of an application's interface, into three
parts: the model, the view, and the controller.

« MVC was originally developed to map the traditional input,
processing, output roles into the GUI realm:
— Input --> Processing --> Output
— Controller --> Model --> View

11

MV C Benefits

* Clarity of design

— easler to implement and maintain

* Modularity
— changes to one don't affect the others
— can develop in parallel once you have the interfaces

* Multiple views

— games, spreadsheets, powerpoint, Eclipse, UML reverse
engineering,

12

Model

* The Model's responsibilities
— Provide access to the state of the system
— Provide access to the system's functionality
— Can notify the view(s) that its state has changed

13

View

* The view's responsibilities
— Display the state of the model to the user

* At some point, the model (a.k.a. the observable)
must registers the views (a.k.a. observers) so the

model can notify the observers that its state has
changed

14

Controller

 The controller's responsibilities

— Accept user input

« Button clicks, key presses, mouse movements, slider bar
changes

— Send messages to the model, which may in turn notify it
observers

— Send appropriate messages to the view
* In Java, listeners are controllers

15

from http://www.enode.com/x/markup/tutorial/mvc.html)

Controller

-

Event is possed
to the Confroller

Controller changes
Model or View(s)

Views get daota
from Model

Model updates Views
when data changes

16

Command pattern

Synopsis or Intent: Encapsulate a request as an object,
thereby letting you parameterize clients with different requests, queue
or log requests, and support undoable operations

Context: You want to model the time evolution of a program:

— What needs to be done, e.g. queued requests, alarms, conditions for
action

— What is being done, e.g. which parts of a composite or distributed action
have been completed

— What has been done, e.g. a log of undoable operations
What are some applications that need to support undo?
— Editor, calculator, database with transactions
— Perform an execute at one time, undo at a different time
Solution: represent units of work as Command objects
— Interface of a Command object can be a simple execute() method
— Extra methods can support undo and redo

— Commands can be persistent and globally accessible, just like normal
objects

Command pattern, continued

e Structure:

Invoker > w| COmmand
execiuef)
AN
Receiver
action() - concreteCommand
* execute() 0— | receiver-=action() ﬁ
Client _____ 'h‘ re%luer

Participants (the classes and/or objects participating in this pattern):
Command (Command) declares an interface for executing an operation
ConcreteCommand defines a binding between a Receiver object and an action
implements Execute by invoking the corresponding operation(s) on Receiver
Invoker asks the command to carry out the request
Receiver knows how to perform operations associated with carrying out the request
Client creates a ConcreteCommand object and sets its receiver

Command pattern, continued

* Consequences:

— You can undo/redo any Command
e Each Command stores what it needs to restore state

— You can store Commands in a stack or queue
« Command processor pattern maintains a history
— It is easy to add new Commands, because you do
not have to change existing classes

« Command is an abstract class, from which you derive
new classes

« execute(), undo() and redo() are polymorphic functions

Design Patterns are NOT

Data structures that can be encoded in classes and
reused as is (i.e., linked lists, hash tables)

Complex domain-specific designs

(for an entire application or subsystem)

If they are not familiar data structures or complex
domain-specific subsystems, what are they?

They are:

— “Descriptions of communicating objects and classes
that are customized to solve a general design problem
in a particular context.”

Observer pattern

Intent:

— Define a one-to-many dependency between objects
so that when one object changes state, all its dependents are
notified and updated automatically

Used in Model-View-Controller framework
— Model is problem domain

— View is windowing system

— Controller is mouse/keyboard control

How can Observer pattern be used in other applications?
JIDK’ s Abstract Window Toolkit (listeners)
Java’ s Thread monitors, notify(), etc.

Structure of Observer Pattern

Subject Observer
for all observers obs |\ +notify() — * |+update()
{ +attach(in Observer) | 1
obs->update() .
} +detach(in Observer) T
ConcreteObserver

ConcreteSubject
-subjectSate > *_|+update()
+getState() 1

return subjectState ﬁ observerState = subject->getState() ﬁ

Three Types of Patterns

* Creational patterns:
— Deal with initializing and configuring classes and objects

e Structural patterns:

— Deal with decoupling interface and implementation of classes
and objects

— Composition of classes or objects

* Behavioral patterns:

— Deal with dynamic interactions among societies of classes and
objects

— How they distribute responsibility

Singleton pattern (creational)

Ensure that a class has only one instance and provide a global point of
access to it

— Why not use a global variable?

Singleton
+3instance - 7 getinstance() I]
-Singleton() returns unique instance |
| +getinstance()

class Singleton
{ public:
static Singleton* getlInstance();
protected: //Why are the following protected?
Singleton () ;
Singleton (const Singletoné&);
Singletoné& operator= (const Singletoné&);
private: static Singleton* instance;
I
Singleton *p2 = pl->getlInstance();

Creational Patterns

Abstract Factory:

— Factory for building related objects

Builder:

— Factory for building complex objects incrementally
Factory Method:

— Method in a derived class creates associates
Prototype:

— Factory for cloning new instances from a prototype
Singleton:

— Factory for a singular (sole) instance

Structural patterns

* Describe ways to assemble objects to realize new
functionality
— Added flexibility inherent in object composition due to ability to
change composition at run-time

— not possible with static class composition

 Example: Proxy
— Proxy: acts as convenient surrogate or placeholder for another
object.

 Remote Proxy: local representative for object in a different
address space

 Virtual Proxy: represent large object that should be loaded on
demand

* Protected Proxy: protect access to the original object

Structural Patterns

Adapter:

— Translator adapts a server interface for a client
Bridge:

— Abstraction for binding one of many implementations
Composite:

— Structure for building recursive aggregations
Decorator:

— Decorator extends an object transparently
Facade:

— Simplifies the interface for a subsystem
Flyweight:

— Many fine-grained objects shared efficiently.
Proxy:

— One object approximates another

Behavioral Patterns

* Chain of Responsibility:

— Request delegated to the responsible service provider
e Command:

— Request or Action is first-class object, hence re-storable
* [terator:

— Aggregate and access elements sequentially
* Interpreter:

— Language interpreter for a small grammar
* Maediator:

— Coordinates interactions between its associates
* Memento:

— Snapshot captures and restores object states privately

Which ones do you think you have seen somewhere?

Behavioral Patterns (cont.)

Observer:
— Dependents update automatically when subject changes
State:
— Object whose behavior depends on its state
Strategy:
— Abstraction for selecting one of many algorithms
Template Method:
— Algorithm with some steps supplied by a derived class
Visitor:
— Operations applied to elements of a heterogeneous object structure

Patterns in software libraries

AWT and Swing use Observer pattern
terator pattern in C++ template library & JDK

~acade pattern used in many student-oriented
ibraries to simplify more complicated
ibraries!

Bridge and other patterns recurs in
middleware for distributed computing
frameworks

More software patterns

* Design patterns

— idioms (low level, C++): Jim Coplein, Scott Meyers
* |.e., when should you define a virtual destructor?
— design (micro-architectures) [Gamma-GoF]

— architectural (systems design): layers, reflection, broker
« Reflection makes classes self-aware, their structure and behavior
accessible for adaptation and change:

Meta-level provides self-representation, base level
defines the application logic

Java Enterprise Design Patterns (distributed transactions and databases)

— E.g., ACID Transaction: Atomicity (restoring an object after a failed
transaction), Consistency, /solation, and Durability

Analysis patterns (recurring & reusable analysis models, from various
domains, i.e., accounting, financial trading, health care)

Process patterns (software process & organization)

Benefits of Design Patterns

Design patterns enable large-scale reuse of software
architectures and also help document systems

Patterns explicitly capture expert knowledge and design
tradeoffs and make it more widely available

Patterns help improve developer communication
Pattern names form a common vocabulary

Web Resources

nttp://home.earthlink.net/~huston2/dp/
nttp://www.dofactory.com/
nttp://hillside.net/patterns/

 Java Enterprise Design Patterns

