Graph Traversals:
Breadth-First and Depth-First Search

Eric Eaton

Bryn Mawr College
Computer Science Department

What is a Graph?

Graphs are collections of
vertices joined by edges

“Graph” = “Network” _— cdee
\
Vertices | Edges
vertices edges, arcs math
nodes links, relations | computer science
sites bonds physics
actors ties, relations | sociology

Example Networks

School Friendship Network Airline Network
(from Moody 2001) (Source: Northwest Airlines)

||
Mahmoun Darkazanli

AA #11 - Crashed into WTC North
Essid Sami Ben Khemais - M Flight AA #77 - Crashe: o Pentagon
™1 Mohamed Haydar Zammar M Flight UA #93 - Crashed in Pennsylvania
Abdelghani Mzoudi W Flight UA #1756 - Crashed into WTC South
- m W Other Associates of Hijackers
Anmed Khalil lbrahim Samir Al-Ani Mounir & Motassadeq Copynight © 2001, Vaidss Krebs
| 3 N
Imad Eddin Barakat Yarkas Zakariya Essabar
| -
Agus Budiman Mohamed Atta Said Bahaji

= .
Mustafs Ahmed al-Hisawi Zacarias Moussaoui

u k¥
il Alshehri 8
- W R Bin st Rayed Mohammed Abdullah
Khalid Shaikh Mohammed Ma,wa,_sh h,\
|- i = Bandar Atbazm
andar Alhazmi
e = gac)\Jarrah >

u
Faisal Al Salmi

Satam Sugami \
Yazid Sufast Cole Bombing Suspects

§
‘Waleed Alshehyi |

n b iz omari — \{
Maohand Alshehri*

#Ialid Ba' Attash [Khallad]

|
- \ — Fahad al Quso
[ARmed Al HaznawHariza Alghamdi wwat Alhazmi Khalialmihdhar
Raed Hijazi
-
Nabil al-Marabh Ah y/gha (di Twer Original Al Qaeda Suspects

Ahmed Al-Hada

Majed Moged
Ahmed Alnani { \

Saeed Alghamdi Mohamed Abdi 1

Terrorist Network Protein-Protein Interactions
(by Valdis Krebs, Orgnet.com) (by Peter Uetz)

Other Applications

Intersections and streets within a city
Computer networks

Electronic circuits

Food webs

Gene regulatory networks

Steps to solve a puzzle

many more...

Outline

Introduction
Graph Basics

Graph Search Problem
— Breadth-First Search
— Depth-First Search

Complexity Analysis

Outline

Introduction
Graph Basics

Graph Search Problem
— Breadth-First Search
— Depth-First Search

Complexity Analysis

Basic Graph Definitions

= Agraph G = (V,E) consists of a finite set of
vertices V and a finite set of edges E

= Each edge is a pair (u,v) where u,v € V

» Vand E are sets, so each vertex v € V' is unique,
and each edge e € E'is unique

= v IS adjacent to u @

= We will focus on two types: (w,0)
» Undirected graphs

» Directed graphs @

Undirected Graph
(1)

All edges are
two-way

6

o @)
= V={1,2,3,4,5)

m Edges are unordered pairs:
E={{1,2},{2,3}, {34}, {2,4}, {4,5}, {5,1} }

Directed Graph

All edges are @

“one-way’ as

indicated by

the arrows @ @
© (4)

= V=11,2,3,4,5}

= Edges are ordered pairs:
E={(1,2),(24),(3,),(4,3), (4,5),(51),(54) }

9

Degree

Undirected Graphs
degree(u): the number of edges {u,v} forallv e V

Degree

Undirected Graphs
degree(u): the number of edges {u,v} forallv e V

Directed Graphs
in-degree(u): the number of edges (v,u) forallve V
out-degree(u): the number of edges (u,v) forallve V

D) D)
©) 5)) 5)

Paths in Graphs

" A pathinagraphis a sequence of vertices

Wi, Ws, ..., W, s.t. (W, wir1) €EE forl<si<n

" The path’s length is the number of edges on the path
— The length of the path from a vertex to itself is 0

= |n asimple path, all vertices are distinct
— The first and last vertices may be the same

path length = 4

12

Paths in Graphs

" How many simple paths are there from 1 to 4
and what are their lengths?

13

Outline

Introduction
Graph Basics

Graph Search Problem
— Breadth-First Search
— Depth-First Search

Complexity Analysis

Outline

Introduction
Graph Basics

Graph Search Problem
— Breadth-First Search
— Depth-First Search

Complexity Analysis

15

Graph Search Problem

" Goal: Find a simple path from a starting
vertex to a goal vertex

* What applications can be framed as
instances of this problem?

Intuition

" From starting vertex, keep expanding vertices
until we find the goal

Intuition

" From starting vertex, keep expanding vertices

until we find the goal
start

WD

Intuition

" From starting vertex, keep expanding vertices

until we find the goal
start

W@

W W

Intuition

" From starting vertex, keep expanding vertices

until we find the goal
start

W@

W W

Intuition

" From starting vertex, keep expanding vertices

until we find the goal
start

Vam®
v W
B

" Breadth-First: expand shallowest unexpanded vertex

= Depth-First: expand deepest unexpanded vertex

Queuing Function

= Used to maintain a ranked list of nodes that are
candidates for expansion start
W2

= Called the “fringe”

W /W)

@

= Substituting different queuing functions yields
different searches

Protection Against Cycles

= \We need to guard against cycles
= Mark each vertex as “closed” when we encounter it
= Do not consider closed vertices again

start

W@

W /W)

@

Bookkeeping Structures

= Node:
— vertex ID

— predecessor node
— path length

" Problem:
— graph
— starting vertex
— goalTest(Vertex v) — tests if vertex is a goal state

General Graph Search

// problem describes the graph, start vertex, and goal test
// queueingfn is a comparator function that ranks two states
// graphSearch returns either a goal node or failure

graphSearch (problem, queuingFn) {

open = {}, closed = {} //empty lists
queuingfn (open, new Node (problem.startvertex)) //init
loop {
if empty (open) then return FAILURE //no nodes remain
c = removeFront (open) //get current node
if problem.goalTest (c.vertex) //goal test

return c

if c.vertex 1s not in closed { //avoid duplicates
add c.vertex to closed
for each Vertex w adjacent to c.vertex //expand node
1f w 1s not 1in closed
queuingFn (open, new Node(w,c));

} 27

Application: Route Finding

Breadth-First Search

Expands the “shallowest” vertex

Application: Route Finding (BFS)

open list closed list

E

open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 30

EraphSearch(problem, queuingFn) {

1}

Application: Route Finding (BFS)

open list closed list
(A,0,null)

E

graphSearch (problem, queuingFn) {
open = {}, closed = {}
[::i>queuinan(open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 31
1}

Application: Route Finding (BFS)

open list closed list
(A,0,null)

E

graphSearch (problem, queuingFn) {
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
[::;>100p {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 30
1}

Application: Route Finding (BFS)

open list closed list
(A,0,null)

E

graphSearch (problem, queuingFn) {
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))

loop {
[::D> if empty(open) then return FAILURE

c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {

add c.vertex to closed

for each w adjacent to c.vertex

i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 33

1}

Application: Route Finding (BFS)

open list closed list

node ¢
(A,0,null)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 34
1}

Application: Route Finding (BFS)

open list closed list

node ¢
(A,0,null)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 35
1}

Application: Route Finding (BFS)

open list closed list

node ¢
(A,0,null)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 36
1}

Application: Route Finding (BFS)

open list closed list
A

node ¢
(A,0,null)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 37
1}

Application: Route Finding (BFS)

open list closed list
A

node ¢
(A,0,null)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 38
1}

Application: Route Finding (BFS)

open list closed list
(B,1,A) A
(C,1,A)
(D,1,A)
node c
(A,0,null)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 39
1}

Application: Route Finding (BFS)

open list closed list
(B,1,A) A
(C,1,A)
(D,1,A)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 40
1}

Application: Route Fmdmg (BFS)

open list closed list
(C,1,A) A
(D,1,A)
node ¢
(B,1,A)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulngfn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
1if w is not in closed
queuingFn (open, new Node (w,c)); 41
1}

Application: Route Fmdmg (BFS)

open list closed list
(C,1,A) A
(D,1,A)
node ¢
(B,1,A)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulngfn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
1if w is not in closed
queuingFn (open, new Node (w,c)); 4
1}

Application: Route Fmdmg (BFS)

open list closed list
(C,1,A) A
(D,1,A)
node ¢
(B,1,A)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 43
1}

Application: Route Fmdmg (BFS)

open list closed list
(C,1,A) A
(D,1,A) B
node ¢
(B,1,A)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulngfn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
1if w is not in closed
queuingFn (open, new Node (w,c)); 44
1}

Application: Route Fmdmg (BFS)

open list closed list
(C,1,A) A
(D,1,A) B
node ¢
(B,1,A)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 45
1}

Application: Route Fmdlng (BFS)

open list closed list
(C,1,A) A
(D,1,A) B
node ¢
(B,1,A)

E
graphSearch (problem, queuingkn) | <:>
open = {}, closed = {}

Clzueuil?an (open, new Node (pr¢ Need to add (C,2,B) and (F,2,B) to open
oop

if empty(open) then returl Since BFS expands the shallowest node,

c = removeFront (open) what must we insure about the open list?
1f problem.goalTest (c.ver:

if c.vertex is not in cloi \What queuing function should we use?
add c.vertex to closed
for each w adjacent to esvertex
1if w is not in-.elosed
queuingFn (open, new Node (w,c)); 46

1}

Application: Route Fmdlng (BFS)

open list closed list
(C,1,A) A
(D,1,A) B
(C,2,B)
(F,2,B)
node ¢
(B,1,A)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)

1f problem.goalTest (c.vertex) then return c BFS uses a
1f c.vertex 1s not in closed {
add c.vertex to closed FIFO QUGUE!

for each w adjacent to c.vertex
1if w is not in closed
queuingFn (open, new Node (w,c)); 47
1}

Application: Route Finding (BFS)

open list closed list
(D,1,A) A
(C,2,B) B
(F,2,B)
node ¢
(C,1,A)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 48
1}

Application: Route Finding (BFS)

open list closed list
(D,1,A) A
(C,2,B) B
(F,2,B) C
node ¢
(C,1,A)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 49
1}

Application: Route Finding (BFS)

open list closed list
(D,1,A) A
(C,2,B) B
(F,2,B) C
(F,2,C)
(E,2,C)
node ¢
(C,1,A)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 50
1}

Application: Route Finding (BFS)

open list closed list
(C,2,B) A
(F,2,B) B
(F,2,C) C
(E,2,C)
node ¢
(D,1,A)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 5
1}

Application: Route Finding (BFS)

open list closed list
(C,2,B) A
(F,2,B) B
(F,2,C) C
(E,2,C) D
node ¢
(D,1,A)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 5
1}

Application: Route Finding (BFS)

open list closed list
(C,2,B) A
(F,2,B) B
(F,2,C) C
(E,2,C) D
(E,2,D)
node ¢
(D,1,A)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 53
1}

Application: Route Finding (BFS)

open list closed list
(F,2,B) A
(F,2,C) B
(E,2,C) C
(E,2,D) D
node c
(C,2,B)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 54
1}

Application: Route Finding (BFS)

open list closed list
(F,2,B) A
(F,2,C) B
(E,2,C) C
(E,2,D) D
node c
(C,2,B)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 55
1}

Application: Route Finding (BFS)

open list closed list
(F,2,C) A
(E,2,C) B
(E,2,D) C
D
node ¢
(F,2,B)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 56
1}

Application: Route Finding (BFS)

open list closed list
(F,2,C) A
(E,2,C) B
(E,2,D) C
D
F
node c
(F,2,B)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 57
1}

Application: Route Finding (BFS)

open list closed list
(F,2,C) A
(E,2,C) B
(E,2,D) C
(G,3,F) D
(H,3,F) F
node ¢
(F,2,B)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 58
1}

Application: Route Finding (BFS)

open list closed list
(E,2,C) A
(E,2,D) B
(G,3,F) C
(H,3,F) D
F
node c
(F,2,C

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 59
1}

Application: Route Finding (BFS)

open list closed list
(E,2,C) A
(E,2,D) B
(G,3,F) C
(H,3,F) D
F
node c
(F,2,C

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 60
1}

Application: Route Finding (BFS)

open list closed list
(E,2,D) A
(G,3,F) B
(H,3,F) C
D
F
node ¢
(E,2,C) &

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 61
1}

Application: Route Finding (BFS)

open list closed list
(E,2,D) A
(G,3,F) 0
(H,3,F) C
E
F
node ¢
(E,2,C) &

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 62
1}

Application: Route Finding (BFS)

open list closed list
(G,3,F) é
H,3F
(H,3,F) B
D
E
F
node ¢
(E,2,D) <y

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 63
1}

Application: Route Finding (BFS)

open list closed list

(H,3,F) A
B
C
D
E
F

node ¢

(G,3,F)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 64
1}

Application: Route Finding (BFS)

open list closed list

(H,3,F) A
B
C
D
E
F

node ¢

(G,3,F)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 65
1}

Breadth-First Search

start @D\O (B
NN
/

©

(\

=)

Breadth-First Search

Breadth-First Search

Ol @\1\ 2\\

start @

start @

Breadth-First Search

°)

1
®\

\@
N

3

\Q

Breadth-First Search
0| 1)

start @ @\ 23
’5&@ /\@5 :
% .

Depth-First Search

Expands the “deepest” vertex

Application: Route Finding (DFS)

open list closed list

node ¢
(A,0,null)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulngfn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 7
1}

Application: Route Finding (DFS)

open list closed list
(B,1,A) A
(C,1,A)
(D,1,A)
node c
(A,0,null)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 73
1}

Application: Route Fmdmg (DFS)

open list closed list
(C,1,A) A
(D,1,A)
node ¢
(B,1,A)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulngfn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
1if w is not in closed
queuingFn (open, new Node (w,c)); 74
1}

Application: Route Fmdmg (DFS)

open list closed list
(C,1,A) A
(D,1,A) B
node ¢
(B,1,A)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 75
1}

Application: Route Fmdmg (DFS)

open list closed list
(C,1,A) A
(D,1,A) B
node ¢
(B,1,A)

E
graphSearch (problem, queuingkn) | <:>
open = {}, closed = {}

Clzueuil?an (open, new Node (pr¢ Need to add (C,2,B) and (F,2,B) to open
oop

if empty(open) then returl Sjnce DFS expands the deepest node, what

c = removeFront (open) must we insure about the open list?
1f problem.goalTest (c.ver:

if c.vertex is not in cloi \What queuing function should we use?
add c.vertex to closed
for each w adjacent to esvertex
1if w is not in-.elosed
queuingFn (open, new Node (w,c)); 76
1}

Application: Route Fmdmg (DFS)

open list closed list
(F,2,B) A
(C,2,B) B
(C,1,A)
(D,1,A)
node ¢
(B,1,A)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)

1f problem.goalTest (c.vertex) then return c DFS uses a
1f c.vertex 1s not in closed {
add c.vertex to closed lJFC)StaCk!

for each w adjacent to c.vertex
1if w is not in closed
queuingFn (open, new Node (w,c)); -7
1}

Application: Route Finding (DFS)

open list closed list
(C,2,B) A
(C,1,A) B
(D,1,A)
node ¢
(F,2,B)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 78
1}

Application: Route Finding (DFS)

open list closed list
(C,2,B) A
(C,1,A) B
(D,1,A) F
node ¢
(F,2,B)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 79
1}

Application: Route Finding (DFS)

open list closed list
(H,3,F) A
(G,3,F) B
(C,2,B) F
(C,1,A)
(D,1,A)
node ¢
(F,2,B)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 30
1}

Application: Route Finding (DFS)

open list closed list
(H,3,F) A
(G,3,F) B
(C,2,B) F
(C,1,A)
(D,1,A)

graphSearch (problem, queuingFn) { <ED
open = {}, closed = {}
queulingFn (open, new Node (problem.startvertex))
loop {
1f empty(open) then return FAILURE
c = removeFront (open)
1f problem.goalTest (c.vertex) then return c
1if c.vertex is not in closed {
add c.vertex to closed
for each w adjacent to c.vertex
i1f w 1s not in closed
queuingFn (open, new Node (w,c)); 81
1}

What we’ve found so far...

Breadth-First Search (FIFO Queue)
= Solves unweighted shortest path problem:

Finds the shortest path between vertices if edges
are unweighted (or equal cost)

Depth-First Search (LIFO Stack)

" Finds nearby goals quickly if lucky
" |f unlucky, finds nearby goals very slowly

Application: 8-Puzzle

Given an initial configuration of 8 numbered
tiles on a 3 x 3 board, move the tiles as to
produce a desired goal configuration

5 4 1 2 3
6 1 8 8 4
7 3 2 7 6 5

Start State Goal State

Slide adapted from materials by Stuart Russell

Application: 8-Puzzle

What are the vertices?

What are the edges?

5 4 1 2
6 1 8 8
 Starting vertex? 510 s

Start State Goal State

Goal vertex / vertices?

Slide adapted from materials by Stuart Russell

Application: 8-Puzzle

What are the vertices? Each vertex corresponds
to a particular tile configuration

What are the edges? Consider four operators:
Move Blank Square Left, Right, Up or Down

— This is a more efficient encoding than
considering each of 4 moves for each tile

The edges signify applying an operator to a board
configuration

Initial state? A particular board configuration

Goal vertex? A particular board configuration

Slide adapted from materials by Stuart Russell

Outline

Introduction
Graph Basics

Graph Search Problem
— Breadth-First Search
— Depth-First Search

Complexity Analysis

86

Outline

Introduction
Graph Basics

Graph Search Problem
— Breadth-First Search
— Depth-First Search

Complexity Analysis

87

What is the Time Complexity of BFS & DFS?

= In the worst case, the goal vertex won’t be found

graphSearch (problem, queuingFn) {
open = {}, closed = {}

queuingFn (open, new Node (problem.startvertex))

loop {
if empty(open) then return FAILURE

c = removeFront (open)
if problem.goalTest (c.vertex) return c

if c.vertex is not in closed {
add c.vertex to closed
for each Vertex w adjacent to c.vertex
if w is not in closed
queuingFn (open, new Node (w,c));

88

What is the Time Complexity of BFS & DFS?

= In the worst case, the goal vertex won’t be found

Each vertex is in K

the queue at most
once, so the outer
loop runs at most

|V | iterations

T

graphSearch (problem, queuingFn) {
open = {}, closed = {}

queuingFn (open, new Node (problem.startvertex))

i::>>loop {

if empty(open) then return FAILURE
c = removeFront (open)
if problem.goalTest (c.vertex) return c

if c.vertex is not in closed {
add c.vertex to closed
for each Vertex w adjacent to c.vertex
if w is not in closed
queuingFn (open, new Node (w,c));

89

What is the Time Complexity of BFS & DFS?

= In the worst case, the goal vertex won’t be found

Each vertex is in
the queue at most
once, so the outer
loop runs at most
|V | iterations

.

T

Performance will
depend on the time
for getAdjacent()

L

graphSearch (problem, queuingFn) {
open = {}, closed = {}

queuingFn (open, new Node (problem.startvertex))

i::>>loop {

if empty(open) then return FAILURE
c = removeFront (open)
if problem.goalTest (c.vertex) return c

if c.vertex 1s not in closed {
add c.vertex to closed

for each Vertex w adjacent to c.vertex
if w is not in closed
queuingFn (open, new Node (w,c));

90

Graph Representation: Adjacency Matrix

0.

0

(5)

o

)

12345
101000

200010

12345
1 01001
210110

301000
400101

301010
4 01101

S 10010

510010

91

Graph Representation: Adjacency Matrix

0.

0

(5)

o

)

What is the

12345
101000
200010

12345
1 01001
210110

performance of

getAdjacent(u)?

301000
400101

301010
4 01101

S 10010

510010

92

Graph Representation: Adjacency List

D)

@) 5)

©) 4)
1) What is the
5 [performance of
3 (s getAdjacent(u)?
4 " 3 S
5 "1 | 4

93

What is the Time Complexity of BFS & DFS?

= Using an adjacency matrix:

graphSearch (problem, queuingFn) {
open = {}, closed = {}

|V | iterations
— |

queuingFn (open, new Node (problem.startvertex))
——— loop {
if empty(open) then return FAILURE

c = removeFront (open)
if problem.goalTest (c.vertex) return c

if c.vertex is not in closed {
B add c.vertex to closed
()(l‘/'l) [__ for each Vertex w adjacent to c.vertex

if w is not in closed
queuingFn (open, new Node (w,c));

94

What is the Time Complexity of BFS & DFS?

= Using an adja

|V | iterations
— |

cency matrix: O(|V |?)

graphSearch (problem, queuingFn) {
open = {}, closed = {}

queuingFn (open, new Node (problem.startvertex))
——— loop {
if empty(open) then return FAILURE

c = removeFront (open)
if problem.goalTest (c.vertex) return c

if c.vertex 1s not in closed {
add c.vertex to closed

0(|V|)E

for each Vertex w adjacent to c.vertex
if w is not in closed
queuingFn (open, new Node (w,c));

95

What is the Time Complexity of BFS & DFS?

= Using an adjacency list:

graphSearch (problem, queuingFn) {
open = {}, closed = {}

|V | iterations
— |

queuingFn (open, new Node (problem.startvertex))
——— loop {
if empty(open) then return FAILURE

c = removeFront (open)
if problem.goalTest (c.vertex) return c

if c.vertex 1s not in closed {
add c.vertex to closed

queulngFn (open, new Node (w,c));

for each Vertex w adjacent to c.vertex
O(out-degree(c.vertex)) F Saen Yertex w adiace
}

}
}

96

What is the Time Complexity of BFS & DFS?

m For an adjacency list, looping over all adjacent vertices
of u will be O(out-degree(u))

= Therefore, the traversal performance is

V|
0, (Z out—degree(vﬂ) = O(|E])

1=1

since the inner loop is repeated O(|V |) times

= However, in a disconnected graph, we must still look at
every vertex, so the performanceis O(|V | + | E|)

How do these térms compare?

97

Sparse vs Dense Graphs

= A sparse graph is one with “few” edges.
Thatis [E| = O ([V])

= A dense graph is one with “many’ edges.
Thatis |E| = O (|[V]?)

0 (1)

@ D e

What is the Time Complexity of BFS & DFS?

= For an adjacency list, getAdjacent(u) will be
O(out-degree(u))

= Therefore, the traversal performance is

V|
0, (Z out—degree(vﬂ) = O(|E])

1=1
since getAdjacent is done O(|V |) times

= However, in a disconnected graph, we must still look at
every vertex, so the performanceis O(|V | + | E|)

Ranges from O(|V |)to O(|V |?),
depending on density

99

What is the Space Complexity of BFS & DFS?

= Really depends on the graph representation

Adjacency Matrix Adjacency List
12345 1 12
101000 2 1 4
200010 3 o 2
301000 4 {3 | 5
4 00101 5 {1 4
S 10010

What is the Space Complexity of BFS & DFS?

= Really depends on the graph representation

Adjacency Matrix Adjacency List
123 4S5 1 2
101000 2 » 4
200010 3 ‘)
301000 4 {3 | 5
400101 5 1 4
S 10010
Space Complexity Space Complexity

O(IV']?) O(V| +|E])

Does BFS find Shortest Paths in
Weighted Graphs?

Summary

e Breadth-First Search

— Solves unweighted shortest path problem
— Uses FIFO queue
— Traverses the graph in level-order

* Depth-First Search
— Uses LIFO stack
— Takes a “deep-dive” into the graph

* Time/Space Complexity: O(|V | + | E|)

