THE WEIGHTED SHORTEST
PATH PROBLEM

Weighted Shortest Path Problem

Single-source shortest-path problem:

Given as input a weighted graph, G=(V, E), and a
distinguished starting vertex, s, find the shortest weighted
path from s to every other vertex in G.

Dijkstra’ s algorithm (also called uniform cost search)
— Use a priority queue in general search/traversal

— Keep tentative distance for each vertex giving shortest
path length using vertices visited so far.

— Record vertex visited before this vertex (to allow
printing of path).

— At each step choose the vertex with smallest distance
among the unvisited vertices (greedy algorithm).

Example Network

Dijkstra’ s Algorithm

The pseudo code for Dijkstra’ s algorithm assumes the
following structure for a Vertex object

class Vertex

{
public List adj; //Adjacency list
public boolean known;
public DisType dist; //DistType 1s probably int
public Vertex path;
//Other fields and methods as needed

Dijkstra’ s Algorithm

void dijksra (Vertex start)
{
for each Vertex v in V {
v.dist = Integer.MAX VALUE;
v.known = false;
v.path = null;

start.distance = 0;

while there are unknown vertices {
v = unknown vertex with smallest distance
v.known = true;
for each Vertex w adjacent to v
if (!w.known)

if (v.dist + weight (v, w)< w.distance) {
decrease (w.dist to v.dist+tweight (v,

w.path = v;

W))

Correctness of Dijkstra’ s Algorithm

The algorithm is correct because of a property of
shortest paths:

If Py = vy, Vy, ..., V;, Vy, IS @ shortest path from v, to v,
then P, = vy, v,, ..., v;,, must be a shortest path from v, to
v;. Otherwise P, would not be as short as possible since
P, extends P, by just one edge (from v; to v,)

P, must be shorter than P, (assuming that all edges have

positive weights). So the algorithm must have found P,
on an earlier iteration than when it found P,.

l.e. Shortest paths can be found by extending earlier
known shortest paths by single edges, which is what the
algorithm does.

Running Time of Dijkstra’ s Algorithm

The running time depends on how the vertices are manipulated.
The main ‘while’ loop runs O(|V|) time (once per vertex)

Finding the “unknown vertex with smallest distance” (inside the
while loop) can be a simple linear scan of the vertices and so is also
O([V|). With this method the total running time is O (|V|?). This is
acceptable (and perhaps optimal) if the graph is dense (|E| = O (|V|
2)) since it runs in linear time on the number of edges.

If the graph is sparse, (|E| = O (|V|)), we can use a priority queue
to select the unknown vertex with smallest distance, using the
deleteMin operation (O(Ig [V|)). We must also decrease the path
lengths of some unknown vertices, which is also O(Ig|V]). The
deleteMin operation is performed for every vertex, and the
“decrease path length” is performed for every edge, so the running
time is O(|[E| Ig|V| + [VIIg|V]) = O((|V[+|E]) lg|V]) = O(|E[Ig|V]) if all
vertices are reachable from the starting vertex

Dijkstra and Negative Edges

Note in the previous discussion, we made the
assumption that all edges have positive weight. If any
edge has a negative weight, then Dijkstra’ s algorithm
fails. Why is this so?

Suppose a vertex, u, is marked as “known”. This means
that the shortest path from the starting vertex, s, to u has
been found.

However, it’ s possible that there is negatively weighted
edge from an unknown vertex, v, back to u. In that case,
taking the path from s to v to u is actually shorter than
the path from s to u without going through v.

Other algorithms exist that handle edges with negative
weights for weighted shortest-path problem.

All-pairs shortest paths...

“Floyd-Warshall algorithm”

(®)

9
e
\ Matrix representation
6
7
12

TO
/
0
DABCDE

1

G SR
@/ A 0 8 13 - 1
11 B - O - 6 12
FROM C - 9 0
D 7 -0 0 -
E - 11 O

All-pairs shortest paths...

D= (d%) k : CL
. KO o N d;; = shortest distance from 1 to
I through {1, ..., k}
C 9 0 -
D
E

D'=(d)) (&) (o)
e)

MmO O W >
o

© © ®
>

o)

5»—

)
\

~
\ —_
()

All-pairs shortest paths...

2 — 2 4 _ 4
D —(dij)/ N D*=(d;;) ~ ~
Al 0 8 13| 14 |1 A| 0 8 13 14 1
B - O - 6 12 B 13 0| 6 |6 12
C - 9 0|15 21 C 221 9 0 15 21
D 7 15 0 O 8 D 7 9 0 0 8
E - - - 11 o0 E 18 20 1111 O
- _J G _J
3_ (43 5
D°=(d;;) D= (d;;)
4 N e N
Al 0 8 13 14 1 Al 0 8|12 1211
B -0 - 6 12 B| 13 0 6 6 12
C -9 0 15 21 Cl| 2 9 0 15 21
D 7 9 |10 0 8 D 7 9 0 0 8
E - - - 11 0 E | 18 20 11 11 0
- _J - _J

to store the path, another matrix can track the last intermediate vertex

Floyd-Warshall Pseudocode

Input: D= (d;) (the initial edge-cost matrix)
Output: Dr= (di“j) (the final path-cost matrix)

fork=1ton // intermediate vertices considered
fori=1ton /| the “from” vertex

forj=1ton // the “to” vertex

d = min{ d5' dk1+ dkl

1] 2

/ &/ best, including vertex k

best, ignoring vertex k

