1/23/14

Introduction to C

Bryn Mawr College
(CS246 Programming Paradigm

History of C

Developed during 1969-73 in the Bell Labs.
C is a by-product of the UNIX operating system.

Original UNIX operating system (1969) was written by
Ken Thompson

Ran on the DEC PDP-7 computer (8K words of main
memory)

Written in assembly language
Painful to debug and hard to enhance
B was designed by Thompson

Dennis Ritchie developed C — meant to be an extended
version of B

History of C

* Original machine (DEC
PDP-11) was very small
o 24k bytes of memory,
o 12k used for operating
systems
* Small in memory size,
not actual size.

The C Language

Currently one of the most commonly-used
programming languages

a low-level language

small (with limited set of features), but powerful.

C is permissive. It does not, in general, try to protect
a programmer from his/her mistakes.

very portable : compiler exists for virtually every
processor

can be error-prone, difficult to understand and
modify

Programming Process

* Source code must carry extension .c
* Identifiers may be named with any valid Unix file
name
o may contain letters, digits and underscores,
o but must begin with a letter or underscore.

o case-sensitive:
ten teN tEn tEN Ten TeN TEn TEN — all different

Example

/* helloworld.c,
Displays a message */

#include <stdio.h>
int main() {

printf (“Hello, world!\n");
return 0;

}
helloworld.c

Hello World in C

Preprocessor used to
share information among
source files

#include <stdio.h>

Similar to Java’ s import

int main() {
printf(“Hello, world!\n”);
return 0;

3

1/23/14

Hello World in C

Program mostly is a
collection of functions

#include <stdio.h>
“main” function special:
the entry point

int main { “int” qualifier indicates
. fyngction returns an integer
printf(“Hello, world!\n

return\0;
}

1/0 performed by a library function

The Compiler

* gce (Gnu C Compiler)

* gcc —g —Wall helloworld.c —o hw

* gcc flags
o -g (produce debugging info for gdb)
o -Wall (print warnings for all events)

o -o filename (name output file with filename, default
is a.out)

Programming Process Summary

Program (source) file [~ - -~~~ - helloworld.c

compilation + - -~ gcc —g —Wall helloworld.c —o hw

Object file C standard library
4
linking/building
Executable file [~ - - hw

All this is done under Unix

C Program Style

* Case sensitive
* Ignores blanks
* Comments
1. Ignored between /* and */
2. Comments are integral to good programming!

e All local variables must be declared before they
are used !!!

Data Types

e Integer
o Ckeyword: int, short, long
o Range: typically 32-bit (+2 billion), 16-bit, 64-bit
¢ Floating-point number
o Ckeyword: float, double
o Range: 32-bit (+ 103), 64-bit
o Examples: 0.67f,123.45£,1.2E-6f, 0.67,
123.45, 1.2E-6

In general, use double

Variables and Basic Operations

* Declaration (identify variables and type)
int x;
int y, z;
» Assignment (value setting)
x =1;
y = value-returning-expression;
* Reference (value retrieval)
y=x%* 2;

1/23/14

Constants

¢ Integer
o const int year = 2002;
* Floating point number
o const double pi = 3.14159265;

« Constants are variables whose initial value can not
be changed.

* Comparable to static final

Output Functions

* Output characters
printf ("Text message\n") ;

* Output an integer \n for new line
int x = 100;
printf ("Value = %d\n", x);

Output: value = 100

Variations

* Output a floating-point number
double y = 1.23;
printf ("Value = %£f\n", y);
* Output multiple numbers
int x = 100;
double y = 1.23;
printf("x = %d, y = %£f\n", x, y);

Output: x = 100, y = 1.230000

printf Summary

printf ("

» Text containing special symbols
o %d for an integer
o %£ for a floating-point number
o \n for a newline
* List of variables (or expressions)
o In the order corresponding to the % sequence

Display Problem

* Problem
o Precision of double: 15 digits
o Precision of $£: 6 digits below decimal
o Cannot show all the significant digits

* Solution

o More flexible display format possible with
printf

1/23/14

% Specification

° %i int, char (to show value)

e %d same as above (d for decimal)

* $f double (floating-point)

* %e double (exponential, e.g., 1.5e3)

Formatting
Precision % . #HE
Width SHE, $Hd Relace #
) . eplace
o Note: Entire width with digit(s)
Zero-padding %$0#d

Left-justification $-#d
Various combinations of the above

Formatting Example (1)

$£ with 1.23456789 >1.234568<
%.10f with 1.23456789 >1.2345678900<
%.2f with 1.23456789 >1.23<

%d with 12345 >12345<
%$10d with 12345 > 12345<
%$2d with 12345 >12345<

$£ with 1.23456789 >1.234568<
%8.2f with 1.23456789 > 1.23<

Formatting Example (2)

%d:%d with 1 and 5 >1:5<
%$02d:%02d with 1 and 5 >01:05<

%$10d with 12345 > 12345<
%$-10d with 12345 >12345 <

formatting.c

Arithmetic Operators

e Unary: +, - (signs)

* Binary: +, -, * (multiplication),
/ (division), $ (modulus, int remainder)

» Parentheses: (and) must always match.
oGood: (x), (x - (y - 1)) % 2
oBad: (x,)x(

Types and Casting

Choose types carefully

An arithmetic operation requires that the two
values are of the same type

For an expression that involves two different types,
the compiler will cast the smaller type to the larger
type

Example: 4 * 1.5=6.0

Mixing Data Types

* int values only = int

o4/ 2=2
o3/ 2=1
oint x = 3, y = 2;
x/y=1
* Involving a doubie value = double

03.0/ 2=15

1/23/14

Assignment of Values

e int x;

ox = 1;

ox = 1.5; /* xisl */ warning
* double y;

oy =1; /* yis 1.0 */

oy =1.5;

oy 3/ 2; /*yisl0 */

int evaluation; warning

Example

int i, 3, k, 1; -
double £: mixingtypes.c

i = 3;

j=2;

k=1i/ 3j;

printf ("k = %d\n", k);

£f=1.5;

1=f; /* warning */

printf ("1 = %d\n", 1); /* truncated */

sizeof and Type Conversions

* sizeof (type)
o The sizeof operator returns the number of bytes
required to store the given type

Implicit conversions Explicit conversions
o arithmetic o casting
o assignment int x;
o function parameters x = (int) 4.0;

@ function return type

@ promotion if possible

Use of char (character)

* Basic operations
o Declaration: char c;
o Assignment: ¢ = 'a';
o Reference: ¢ = ¢ + 1;
* Constants
o Single-quoted character (only one)
o Special characters: '\n', '\t' (tab),
"\" ' (double quote), "\ ' ' (single quote),
"\\' (backslash)

Characters are Integers

* Achar type represents an integer value from 0
to 255 (1 byte) or —128 to 127.

* Asingle quoted character is called a “character
constant .

* C characters use ASCII representation:

e 'A' =65 .. 'Z' = 'A' + 25 = 90
e 'a' =97 .. 'z' = 'a' + 25 = 122
e '0'!'=0 (48), '9' - '0' =9

* Never make assumptions of char values
o Always write 'A" instead of 65

ASCII Table

[El Ascil Table BEE

oe e e o2 American Standard Code
/ 5 - for Information Interchange
2 | A standard way of
51 .
2 representing the alphabet,
= & numbers, and symbols
% (in computers)
o
61
62
83
64
85
s 2 102 wikipedia on ASCIL

1/23/14

char Input/Output

* Input
o char getchar () receives/returns a character
o Built-in function

* Output
o printf with $c specification

e s chartypes.c
c = getchar();

printf ("Character >%c< has the value %d.\n", c, c);
return 0;

}

scanf Function

» Format string containing special symbols
o %d forint
o %f for float
o %$1f£ for double
o %c for char
o \n for a newline
* List of variables (or expressions)
o In the order corresponding to the % sequence

scanf Function

* The function scanf is the input analog of
printf

» Each variable in the list MUST be prefixed with an
&.

* Ignores white spaces unless format string contains
%c

scanf Function

int main() {
int x;

printf ("Enter a value:\n");

scanf ("%d", &x);

printf ("The value is %d.\n",
X);

return O;

scanf with multiple variables

1n:n!:a;? () { scanf.c
char c;
printf ("Enter an int and a char:");
scanf ("%d %c", &x, &c);
printf ("The values are %d, %c.\n",
x, c);
return 0;

scanf Function

Each variable in the list MUST be prefixed with
an &.

Read from standard input (the keyboard) and tries
to match the input with the specified pattern, one
by one.

If successful, the variable is updated; otherwise,
no change in the variable.

The process stops as soon as scanf exhausts its
format string, or matching fails.

Returns the number of successful matches.

1/23/14

scanf Continued

* White space in the format string match any
amount of white space, including none, in the
input.

* Leftover input characters, if any, including one
‘\n’ remain in the input buffer, may be passed
onto the next input function.

o Use getchar () to consume extra characters
o If the next input function is also scan§, it will
ignore ‘\n’ (and any white spaces).

scanf Notes

* Beware of combining scanf and getchar ().
» Use of multiple specifications can be both
convenient and tricky.
o Experiment!
* Remember to use the return value for error
checking.

