
1/23/14	

1	

Introduction to C

Bryn Mawr College
CS246 Programming Paradigm

History of C
•  Developed during 1969-73 in the Bell Labs.
•  C is a by-product of the UNIX operating system.
•  Original UNIX operating system (1969) was written by

Ken Thompson
•  Ran on the DEC PDP-7 computer (8K words of main

memory)
•  Written in assembly language
•  Painful to debug and hard to enhance
•  B was designed by Thompson
•  Dennis Ritchie developed C – meant to be an extended

version of B

History of C
•  Original machine (DEC

PDP-11) was very small
o  24k bytes of memory,
o  12k used for operating

systems

•  Small in memory size,
not actual size.

The C Language
•  Currently one of the most commonly-used

programming languages
•  a low-level language
•  small (with limited set of features), but powerful.
•  C is permissive. It does not, in general, try to protect

a programmer from his/her mistakes.
•  very portable : compiler exists for virtually every

processor
•  can be error-prone, difficult to understand and

modify

Programming Process
•  Source code must carry extension .c
•  Identifiers may be named with any valid Unix file

name
o may contain letters, digits and underscores,
o but must begin with a letter or underscore.
o case-sensitive:

ten teN tEn tEN Ten TeN TEn TEN – all different

Example

helloworld.c

/* helloworld.c,
 Displays a message */

#include <stdio.h>

int main() {

 printf(“Hello, world!\n");
 return 0;

}

1/23/14	

2	

Hello World in C

#include <stdio.h>

int main() {
 printf(“Hello, world!\n”);
 return 0;
}

Preprocessor used to
share information among
source files
Similar to Java’s import

#include <stdio.h>

int main() {
 printf(“Hello, world!\n”);
 return 0;
}

Hello World in C
Program mostly is a
collection of functions
“main” function special:
the entry point
“int” qualifier indicates
function returns an integer

I/O performed by a library function

The Compiler
•  gcc (Gnu C Compiler)
•  gcc –g –Wall helloworld.c –o hw
•  gcc flags

o  -g (produce debugging info for gdb)
o  -Wall (print warnings for all events)
o  -o filename (name output file with filename, default

is a.out)

Programming Process Summary
Program (source) file

Object file

Executable file

C standard library

compilation

linking/building

helloworld.c

hw

gcc –g –Wall helloworld.c –o hw

All this is done under Unix

C Program Style
•  Case sensitive
•  Ignores blanks
•  Comments

1.  Ignored between /* and */
2.  Comments are integral to good programming!

•  All local variables must be declared before they
are used !!!

Data Types
•  Integer

o C keyword: int, short, long
o Range: typically 32-bit (±2 billion), 16-bit, 64-bit

•  Floating-point number
o C keyword: float, double
o Range: 32-bit (± 1038), 64-bit
o Examples: 0.67f, 123.45f, 1.2E-6f, 0.67,
123.45, 1.2E-6

In general, use double

1/23/14	

3	

Variables and Basic Operations
•  Declaration (identify variables and type)

int x;
int y, z;

•  Assignment (value setting)
x = 1;
y = value-returning-expression;

•  Reference (value retrieval)
y = x * 2;

Constants
•  Integer

o const int year = 2002;
•  Floating point number

o const double pi = 3.14159265;
•  Constants are variables whose initial value can not

be changed.
•  Comparable to static final

Output: Value = 100

•  Output characters
printf("Text message\n");

•  Output an integer
int x = 100;
printf("Value = %d\n", x);

Output Functions

\n for new line

Variations
•  Output a floating-point number

double y = 1.23;
printf("Value = %f\n", y);

•  Output multiple numbers
int x = 100;
double y = 1.23;
printf("x = %d, y = %f\n", x, y);

Output: x = 100, y = 1.230000

printf Summary
printf(" ",);

•  Text containing special symbols
o %d for an integer
o %f for a floating-point number
o \n for a newline

•  List of variables (or expressions)
o  In the order corresponding to the % sequence

Display Problem

•  Problem
o Precision of double: 15 digits
o Precision of %f: 6 digits below decimal
o Cannot show all the significant digits

•  Solution
o More flexible display format possible with
printf

1/23/14	

4	

% Specification

•  %i int, char (to show value)
•  %d same as above (d for decimal)
•  %f double (floating-point)
•  %e double (exponential, e.g., 1.5e3)

Formatting

•  Precision %.#f
•  Width %#f, %#d

o Note: Entire width
•  Zero-padding %0#d
•  Left-justification %-#d
•  Various combinations of the above

Replace #
with digit(s)

Formatting Example (1)
%f with 1.23456789 >1.234568<
%.10f with 1.23456789 >1.2345678900<
%.2f with 1.23456789 >1.23<

%d with 12345 >12345<
%10d with 12345 > 12345<
%2d with 12345 >12345<

%f with 1.23456789 >1.234568<
%8.2f with 1.23456789 > 1.23<

Formatting Example (2)

%d:%d with 1 and 5 >1:5<
%02d:%02d with 1 and 5 >01:05<

%10d with 12345 > 12345<
%-10d with 12345 >12345 <

formatting.c

Arithmetic Operators

•  Unary: +, - (signs)

•  Binary: +, -, * (multiplication),
/ (division), % (modulus, int remainder)

•  Parentheses: (and) must always match.
o Good: (x), (x - (y - 1)) % 2

o Bad: (x,)x(

Types and Casting
•  Choose types carefully
•  An arithmetic operation requires that the two

values are of the same type
•  For an expression that involves two different types,

the compiler will cast the smaller type to the larger
type

•  Example: 4 * 1.5 = 6.0

1/23/14	

5	

Mixing Data Types

•  int values only ⇒ int
o 4 / 2 ⇒ 2
o 3 / 2 ⇒ 1
o int x = 3, y = 2;
 x / y ⇒ 1

•  Involving a double value ⇒ double
o 3.0 / 2 ⇒ 1.5

Assignment of Values
•  int x;

o x = 1;
o x = 1.5; /* x is 1 */

•  double y;
o y = 1; /* y is 1.0 */
o y = 1.5;
o y = 3 / 2; /* y is 1.0 */

int evaluation; warning

warning

Example

mixingtypes.c
 int i, j, k, l;
 double f;

 i = 3;
 j = 2;
 k = i / j;
 printf("k = %d\n", k);

 f = 1.5;
 l = f; /* warning */
 printf("l = %d\n", l); /* truncated */

•  sizeof(type)
o The sizeof operator returns the number of bytes

required to store the given type

sizeof and Type Conversions

Implicit conversions
ú  arithmetic

ú  assignment

ú  function parameters

ú  function return type

ú  promotion if possible

Explicit conversions
ú  casting

int x;

x = (int) 4.0;

Use of char (character)
•  Basic operations

o Declaration: char c;
o Assignment: c = 'a';
o Reference: c = c + 1;

•  Constants
o Single-quoted character (only one)
o Special characters: '\n', '\t' (tab),
'\"' (double quote), '\'' (single quote),

 '\\' (backslash)

•  A char type represents an integer value from 0
to 255 (1 byte) or –128 to 127.

•  A single quoted character is called a “character
constant”.

•  C characters use ASCII representation:
•  'A' = 65 … 'Z' = 'A' + 25 = 90
•  'a' = 97 … 'z' = 'a' + 25 = 122
•  '0'!= 0 (48), '9' - '0' = 9
•  Never make assumptions of char values

o Always write 'A' instead of 65

Characters are Integers

1/23/14	

6	

ASCII Table
American Standard Code
for Information Interchange
A standard way of
representing the alphabet,
numbers, and symbols
(in computers)

wikipedia on ASCII

char Input/Output
•  Input

o char getchar() receives/returns a character
o Built-in function

•  Output
o printf with %c specification

int main() {
 char c;
 c = getchar();
 printf("Character >%c< has the value %d.\n", c, c);
 return 0;
}

chartypes.c

scanf Function
scanf(" ",);

•  Format string containing special symbols

o %d for int
o %f for float
o %lf for double
o %c for char
o \n for a newline

•  List of variables (or expressions)
o  In the order corresponding to the % sequence

scanf Function
•  The function scanf is the input analog of
printf

•  Each variable in the list MUST be prefixed with an
&.

•  Ignores white spaces unless format string contains
%c

scanf Function

int main() {
 int x;

 printf("Enter a value:\n");
 scanf("%d", &x);
 printf("The value is %d.\n",
x);
 return 0;
}

scanf with multiple variables

int main() {
 int x;
 char c;
 printf("Enter an int and a char:");
 scanf("%d %c", &x, &c);
 printf("The values are %d, %c.\n",
 x, c);
 return 0;
}

scanf.c

1/23/14	

7	

scanf Function
•  Each variable in the list MUST be prefixed with

an &.
•  Read from standard input (the keyboard) and tries

to match the input with the specified pattern, one
by one.

•  If successful, the variable is updated; otherwise,
no change in the variable.

•  The process stops as soon as scanf exhausts its
format string, or matching fails.

•  Returns the number of successful matches.

scanf Continued
•  White space in the format string match any

amount of white space, including none, in the
input.

•  Leftover input characters, if any, including one
‘\n’ remain in the input buffer, may be passed
onto the next input function.
o Use getchar() to consume extra characters
o  If the next input function is also scanf, it will

ignore ‘\n’ (and any white spaces).

scanf Notes
•  Beware of combining scanf and getchar().
•  Use of multiple specifications can be both

convenient and tricky.
o  Experiment!

•  Remember to use the return value for error
checking.

