
1/30/14	

1	

Control Flow Statements

1

Based on slides from K. N. King

Bryn Mawr College
CS246 Programming Paradigm

Statements
•  So far, we’ve used return statements and expression

statements.
•  Most of C’s remaining statements fall into three

categories:
o Selection statements: if and switch
o  Iteration statements: while, do, and for
o Jump statements: break, continue, and goto.

(return also belongs in this category.)
•  Other C statements:

o Compound statement
o Null statement

2

Logical Expressions
•  In many programming languages, an expression

such as i < j would have a special “Boolean” or
“logical” type.

•  In C, a comparison such as i < j yields an integer:
either 0 (false) or 1 (true).

3

Relational Operators
•  C’s relational operators:
 < less than
 > greater than
 <= less than or equal to
 >= greater than or equal to

•  These operators produce 0 (false) or 1 (true) when
used in expressions.

•  The relational operators can be used to compare
integers and floating-point numbers, with operands
of mixed types allowed.

4

Relational Operators
•  The precedence of the relational operators is lower

than that of the arithmetic operators.
o For example, i + j < k - 1 means (i + j) < (k -
1).

•  The relational operators are left associative.

5

Relational Operators
•  Consider the expression
 i < j < k

o  Is it legal?
o What does it test?

 Since the < operator is left associative, this expression is
equivalent to (i < j) < k

 The 1 or 0 produced by i < j is then compared to k.

•  How to test whether j lies between i and k?
 The correct expression is i < j && j < k.

6

YES

1/30/14	

2	

Equality Operators
•  C provides two equality operators:
 == equal to
 != not equal to

•  The equality operators are left associative and produce
either 0 (false) or 1 (true) as their result.

•  The equality operators have lower precedence than the
relational operators, so the expression

 i < j == j < k
 is equivalent to
 (i < j) == (j < k)

7

Logical Operators
•  More complicated logical expressions can be built

from simpler ones by using the logical operators:
 ! logical negation
 && logical and
 || logical or

•  The ! operator is unary, while && and || are
binary.

•  The logical operators produce 0 or 1 as their result.
•  The logical operators treat any nonzero operand as

a true value and any zero operand as a false value.

8

Logical Operators
•  Behavior of the logical operators:

!expr has the value 1 if expr has the value 0.
expr1 && expr2 has the value 1 if the values of expr1

and expr2 are both nonzero.
expr1 || expr2 has the value 1 if either expr1 or expr2 (or

both) has a nonzero value.

•  In all other cases, these operators produce the value
0.

9

Logical Operators
•  Both && and || perform “short-circuit” evaluation:

they first evaluate the left operand, then the right one.
•  If the value of the expression can be deduced from the

left operand alone, the right operand isn’t evaluated.
•  Example:
 (i != 0) && (j / i > 0)

 (i != 0) is evaluated first. If i isn’t equal to 0, then
(j / i > 0) is evaluated.

•  If i is 0, the entire expression must be false, so there’s
no need to evaluate (j / i > 0). Without short-circuit
evaluation, division by zero would have occurred.

10

Logical Operators
•  Thanks to the short-circuit nature of the && and ||

operators, side effects in logical expressions may
not always occur.

•  Example:
 i > 0 && ++j > 0
 If i > 0 is false, then ++j > 0 is not evaluated, so j
isn’t incremented.

•  The problem can be fixed by changing the
condition to ++j > 0 && i > 0 or, even better, by
incrementing j separately.

11

Logical Operators
•  The ! operator has the same precedence as the

unary plus and minus operators.
•  The precedence of && and || is lower than that

of the relational and equality operators.
o For example, i < j && k == m means (i < j)
&& (k == m).

•  The ! operator is right associative; && and ||
are left associative.

12

1/30/14	

3	

The if Statement
•  The if statement allows a program to choose

between two alternatives by testing an expression.
•  In its simplest form, the if statement has the form

 if (expression) statement
•  When an if statement is executed, expression is

evaluated; if its value is nonzero, statement is
executed.

•  Example:
 if (line_num == MAX_LINES)
 line_num = 0;

13

The if Statement
•  Confusing == (equality) with = (assignment) is

perhaps the most common C programming error.
•  The statement

 if (i == 0) …
 tests whether i is equal to 0.

•  The statement
 if (i = 0) …

 assigns 0 to i, then tests whether the result is
nonzero.

14

The if Statement
•  Often the expression in an if statement will test

whether a variable falls within a range of values.
•  To test whether 0 ≤ i < n:

 if (0 <= i && i < n) …
•  To test the opposite condition (i is outside the

range):
 if (i < 0 || i >= n) …

15

Compound Statements
•  In the if statement template, notice that statement

is singular, not plural:
 if (expression) statement

•  To make an if statement control two or more
statements, use a compound statement.

•  A compound statement has the form
 { statements }

•  Putting braces around a group of statements forces
the compiler to treat it as a single statement.

16

The else Clause
•  An if statement may have an else clause:
 if (expression) statement else statement

•  The statement that follows the word else is
executed if the expression has the value 0.

•  Example:
 if (i > j)
 max = i;
 else
 max = j;

17

The else Clause
•  It’s not unusual for if statements to be nested inside

other if statements:
 if (i > j)
 if (i > k)
 max = i;
 else
 max = k;
 else
 if (j > k)
 max = j;
 else
 max = k;

•  Aligning each else with the matching if makes the
nesting easier to see.

18

1/30/14	

4	

The else Clause
•  To avoid confusion, don’t hesitate to add braces:
 if (i > j) {
 if (i > k)
 max = i;
 else
 max = k;
 } else {
 if (j > k)
 max = j;
 else
 max = k;
 }

19

Cascaded if Statements
•  A “cascaded” if statement is often the best way to

test a series of conditions, stopping as soon as one
of them is true.

•  Example:
 if (n < 0)
 printf("n is less than 0\n");
 else
 if (n == 0)
 printf("n is equal to 0\n");
 else
 printf("n is greater than 0\n");

20

Cascaded if Statements
•  Although the second if statement is nested inside

the first, C programmers don’t usually indent it.
•  Instead, they align each else with the original if:
 if (n < 0)
 printf("n is less than 0\n");
 else if (n == 0)
 printf("n is equal to 0\n");
 else
 printf("n is greater than 0\n");

21

Cascaded if Statements
•  This layout avoids the problem of excessive

indentation when the number of tests is large:
 if (expression)
 statement
 else if (expression)
 statement
 …
 else if (expression)
 statement
 else
 statement

22

Program: Calculating a Broker’s Commission
•  When stocks are sold or purchased through a broker, the

broker’s commission often depends upon the value of the
stocks traded.

•  Suppose that a broker charges the amounts shown in the
following table:
 Transaction size Commission rate
 Under $2,500 $30 + 1.7%
 $2,500–$6,250 $56 + 0.66%
 $6,250–$20,000 $76 + 0.34%
 $20,000–$50,000 $100 + 0.22%
 $50,000–$500,000 $155 + 0.11%
 Over $500,000 $255 + 0.09%

•  The minimum charge is $39.

23

Program: Calculating a Broker’s Commission

•  The broker.c program asks the user to enter the
amount of the trade, then displays the amount of
the commission:

 Enter value of trade: 30000
 Commission: $166.00

•  The heart of the program is a cascaded if
statement that determines which range the trade
falls into.

24

1/30/14	

5	

The “Dangling else”
•  When if statements are nested, the “dangling else”

problem may occur:
 if (y != 0)
 if (x != 0)
 result = x / y;
 else
 printf("Error: y is equal to 0\n");

•  The indentation suggests that the else clause belongs
to the outer if statement.

•  However, C follows the rule that an else clause
belongs to the nearest if statement that hasn’t already
been paired with an else.

25

The “Dangling else”
•  A correctly indented version would look like this:
 if (y != 0)
 if (x != 0)
 result = x / y;
 else
 printf("Error: y is equal to 0\n");

26

The “Dangling else”
•  To make the else clause part of the outer if

statement, we can enclose the inner if statement
in braces:

 if (y != 0) {
 if (x != 0)
 result = x / y;
 } else
 printf("Error: y is equal to 0\n");

•  Using braces in the original if statement would
have avoided the problem in the first place.

27

Conditional Expressions
•  C’s conditional operator allows an expression to

produce one of two values depending on the value
of a condition.

•  The conditional operator consists of two symbols
(? and :), which must be used together:

 expr1 ? expr2 : expr3
•  The operands can be of any type.
•  The resulting expression is said to be a conditional

expression.

28

Conditional Expressions
•  The conditional operator requires three operands,

so it is often referred to as a ternary operator.
•  The conditional expression expr1 ? expr2 : expr3

should be read “if expr1 then expr2 else expr3.”
•  The expression is evaluated in stages: expr1 is

evaluated first; if its value isn’t zero, then expr2 is
evaluated, and its value is the value of the entire
conditional expression.

•  If the value of expr1 is zero, then the value of
expr3 is the value of the conditional.

29

Conditional Expressions
•  Example:
 int i, j, k;

 i = 1;
 j = 2;
 k = i > j ? i : j;
 k = (i >= 0 ? i : 0) + j;

 The parentheses are necessary, because the
precedence of the conditional operator is less than
that of the other operators discussed so far, with the
exception of the assignment operators.

30

/* k is now 2 */

/* k is now 3 */

1/30/14	

6	

Conditional Expressions
•  Calls of printf can sometimes benefit from

condition expressions. Instead of
 if (i > j)
 printf("%d\n", i);
 else
 printf("%d\n", j);

 we could simply write
 printf("%d\n", i > j ? i : j);

•  Conditional expressions are also common in
certain kinds of macro definitions.

31

Boolean Values in C99
•  C99’s <stdbool.h> header makes it easier to work

with Boolean values.
•  It defines a macro, bool, that stands for _Bool.
•  If <stdbool.h> is included, we can write
 bool flag; /* same as _Bool flag; */

•  <stdbool.h> also supplies macros named true
and false, which stand for 1 and 0, respectively,
making it possible to write

 flag = false;
 …
 flag = true;

32

The switch Statement
•  A cascaded if statement can be used to compare an

expression against a series of values:
 if (grade == 4)
 printf("Excellent");
 else if (grade == 3)
 printf("Good");
 else if (grade == 2)
 printf("Average");
 else if (grade == 1)
 printf("Poor");
 else if (grade == 0)
 printf("Failing");
 else
 printf("Illegal grade");

33

The switch Statement
•  The switch statement is an alternative:
 switch (grade) {
 case 4: printf("Excellent");
 break;
 case 3: printf("Good");
 break;
 case 2: printf("Average");
 break;
 case 1: printf("Poor");
 break;
 case 0: printf("Failing");
 break;
 default: printf("Illegal grade");
 break;
 }

34

The switch Statement
•  A switch statement may be easier to read than a

cascaded if statement.
•  switch statements are often faster than if

statements.
•  Most common form of the switch statement:
 switch (expression) {
 case constant-expression : statements
 …
 case constant-expression : statements
 default : statements
 }

35

The switch Statement
•  The word switch must be followed by an integer

expression—the controlling expression—in
parentheses.

•  Characters are treated as integers in C and thus can
be tested in switch statements.

•  Floating-point numbers and strings don’t qualify,
however.

36

1/30/14	

7	

The switch Statement
•  Each case begins with a label of the form
 case constant-expression :

•  A constant expression is much like an ordinary
expression except that it can’t contain variables or
function calls.
o 5 is a constant expression, and 5 + 10 is a constant

expression, but n + 10 isn’t a constant expression
(unless n is a macro that represents a constant).

•  The constant expression in a case label must
evaluate to an integer (characters are acceptable).

37

The switch Statement
•  After each case label comes any number of

statements.
•  No braces are required around the statements.
•  The last statement in each group is normally
break.

38

The switch Statement
•  Duplicate case labels aren’t allowed.
•  The order of the cases doesn’t matter, and the default case

doesn’t need to come last.
•  Several case labels may precede a group of statements:
 switch (grade) {
 case 4:
 case 3:
 case 2:
 case 1: printf("Passing");
 break;
 case 0: printf("Failing");
 break;
 default: printf("Illegal grade");
 break;
 }

•  If the default case is missing and the controlling expression’s
value doesn’t match any case label, control passes to the next
statement after the switch.

39

The break Statement
•  Without break (or some other jump statement) at the

end of a case, control will flow into the next case.
•  Example:
 switch (grade) {
 case 4: printf("Excellent");
 case 3: printf("Good");
 case 2: printf("Average");
 case 1: printf("Poor");
 case 0: printf("Failing");
 default: printf("Illegal grade");
 }

•  If the value of grade is 3, the message printed is
 GoodAveragePoorFailingIllegal grade

40

Program: Printing a Date
•  Contracts and other legal documents are often dated in

the following way:
 Dated this __________ day of __________ , 20__ .

•  The date.c program will display a date in this form
after the user enters the date in month/day/year form:
 Enter date (mm/dd/yy): 7/19/14
 Dated this 19th day of July, 2014.

•  The program uses switch statements to add “th” (or
“st” or “nd” or “rd”) to the day, and to print the month
as a word instead of a number.

41

date.c

/* Prints a date in legal form */

#include <stdio.h>

int main(void)
{
 int month, day, year;

 printf("Enter date (mm/dd/yy): ");
 scanf("%d /%d /%d", &month, &day, &year);

 printf("Dated this %d", day);
 switch (day) {
 case 1: case 21: case 31:
 printf("st"); break;
 case 2: case 22:
 printf("nd"); break;
 case 3: case 23:
 printf("rd"); break;
 default: printf("th"); break;
 }
 printf(" day of ");

42

1/30/14	

8	

 switch (month) {
 case 1: printf("January"); break;
 case 2: printf("February"); break;
 case 3: printf("March"); break;
 case 4: printf("April"); break;
 case 5: printf("May"); break;
 case 6: printf("June"); break;
 case 7: printf("July"); break;
 case 8: printf("August"); break;
 case 9: printf("September"); break;
 case 10: printf("October"); break;
 case 11: printf("November"); break;
 case 12: printf("December"); break;
 }

 printf(", 20%.2d.\n", year);
 return 0;
}

43

Iteration Statements
•  C provides three iteration statements:

o The while statement is used for loops whose
controlling expression is tested before the loop body is
executed.

o The do statement is used if the expression is tested
after the loop body is executed.

o The for statement is convenient for loops that
increment or decrement a counting variable.

44

The while Statement
•  Using a while statement is the easiest way to set

up a loop.
•  The while statement has the form
 while (expression) statement

•  expression is the controlling expression; statement
is the loop body.

45

The while Statement
•  Example of a while statement:
 while (i < n) /* controlling expression */
 i = i * 2; /* loop body */

•  When a while statement is executed, the
controlling expression is evaluated first.

•  If its value is nonzero (true), the loop body is
executed and the expression is tested again.

•  The process continues until the controlling
expression eventually has the value zero.

46

The while Statement
•  A while statement that computes the smallest power of

2 that is greater than or equal to a number n:
 i = 1;
 while (i < n)
 i = i * 2;

•  A trace of the loop when n has the value 10:
 i = 1; i is now 1.
 Is i < n? Yes; continue.
 i = i * 2; i is now 2.
 Is i < n? Yes; continue.
 i = i * 2; i is now 4.
 Is i < n? Yes; continue.
 i = i * 2; i is now 8.
 Is i < n? Yes; continue.
 i = i * 2; i is now 16.
 Is i < n? No; exit from loop.

47

The while Statement
•  The following statements display a series of
“countdown” messages:

 i = 10;
 while (i > 0) {
 printf("T minus %d and counting\n", i);
 i--;
 }

•  The final message printed is T minus 1 and
counting.

48

1/30/14	

9	

Infinite Loops
•  A while statement won’t terminate if the controlling

expression always has a nonzero value.
•  C programmers sometimes deliberately create an

infinite loop by using a nonzero constant as the
controlling expression:

 while (1) …

•  A while statement of this form will execute forever
unless its body contains a statement that transfers
control out of the loop (break, goto, return) or
calls a function that causes the program to terminate.

49

Program: Summing Numbers
•  The sum.c program sums a series of integers

entered by the user:
 This program sums a series of integers.
 Enter integers (0 to terminate): 8 23 71 5 0
 The sum is: 107

•  The program will need a loop that uses scanf to
read a number and then adds the number to a
running total.

50

sum.c

/* Sums a series of numbers */

#include <stdio.h>

int main(void)
{
 int n, sum = 0;

 printf("This program sums a series of integers.\n");
 printf("Enter integers (0 to terminate): ");

 scanf("%d", &n);
 while (n != 0) {
 sum += n;
 scanf("%d", &n);
 }
 printf("The sum is: %d\n", sum);

 return 0;
}

51

The do Statement
•  General form of the do statement:
 do statement while (expression) ;

•  When a do statement is executed, the loop body is
executed first, then the controlling expression is
evaluated.

•  If the value of the expression is nonzero, the loop
body is executed again and then the expression is
evaluated once more.

52

The do Statement
•  The countdown example rewritten as a do statement:
 i = 10;
 do {
 printf("T minus %d and counting\n", i);
 --i;
 } while (i > 0);

•  The do statement is often indistinguishable from the
while statement.

•  The only difference is that the body of a do
statement is always executed at least once.

53

Program: Calculating the
Number of Digits in an Integer

•  The numdigits.c program calculates the
number of digits in an integer entered by the user:

 Enter a nonnegative integer: 60
 The number has 2 digit(s).

•  The program will divide the user’s input by 10
repeatedly until it becomes 0; the number of
divisions performed is the number of digits.

•  Writing this loop as a do statement is better than
using a while statement, because every integer—
even 0—has at least one digit.

54

1/30/14	

10	

numdigits.c

/* Calculates the number of digits in an integer */

#include <stdio.h>

int main(void)
{
 int digits = 0, n;

 printf("Enter a nonnegative integer: ");
 scanf("%d", &n);

 do {
 n /= 10;
 digits++;
 } while (n > 0);

 printf("The number has %d digit(s).\n", digits);

 return 0;
}

55

The for Statement
•  The for statement is ideal for loops that have a
“counting” variable, but it’s versatile enough to be
used for other kinds of loops as well.

•  General form of the for statement:
 for (expr1 ; expr2 ; expr3) statement
 expr1, expr2, and expr3 are expressions.

•  Example:
 for (i = 10; i > 0; i--)
 printf("T minus %d and counting\n", i);

56

The for Statement
•  The for statement is closely related to the while

statement.
•  Except in a few rare cases, a for loop can always be

replaced by an equivalent while loop:
 expr1;
 while (expr2) {
 statement
 expr3;
 }

•  expr1 is an initialization step that’s performed only
once, before the loop begins to execute.

57

The for Statement
•  expr2 controls loop termination (the loop continues

executing as long as the value of expr2 is nonzero).
•  expr3 is an operation to be performed at the end of

each loop iteration.
•  The result when this pattern is applied to the previous
for loop:

 i = 10;
 while (i > 0) {
 printf("T minus %d and counting\n", i);
 i--;
 }

58

Omitting Expressions in a
for Statement

•  C allows any or all of the expressions that control a
for statement to be omitted.

•  If the first expression is omitted, no initialization is
performed before the loop is executed:

 i = 10;
 for (; i > 0; --i)
 printf("T minus %d and counting\n", i);

•  If the third expression is omitted, the loop body is
responsible for ensuring that the value of the second
expression eventually becomes false:

 for (i = 10; i > 0;)
 printf("T minus %d and counting\n", i--);

59

Omitting Expressions in a
for Statement

•  When the first and third expressions are both
omitted, the resulting loop is nothing more than a
while statement in disguise:

 for (; i > 0;)
 printf("T minus %d and counting\n", i--);

 is the same as
 while (i > 0)
 printf("T minus %d and counting\n", i--);

•  The while version is clearer and therefore
preferable.

60

1/30/14	

11	

Omitting Expressions in a
for Statement

•  If the second expression is missing, it defaults to a
true value, so the for statement doesn’t terminate
(unless stopped in some other fashion).

•  For example, some programmers use the following
for statement to establish an infinite loop:

 for (;;) …

61

for Statements in C99
•  In C99, the first expression in a for statement can be

replaced by a declaration.
•  This feature allows the programmer to declare a

variable for use by the loop:
 for (int i = 0; i < n; i++)
 …

•  The variable i need not have been declared prior to
this statement.

•  A for statement may declare more than one variable,
provided that all variables have the same type:

 for (int i = 0, j = 0; i < n; i++)
 …

62

The Comma Operator
•  On occasion, a for statement may need to have

two (or more) initialization expressions or one that
increments several variables each time through the
loop.

•  This effect can be accomplished by using a comma
expression as the first or third expression in the
for statement.

•  A comma expression has the form
 expr1 , expr2
 where expr1 and expr2 are any two expressions.

63

The Comma Operator
•  A comma expression is evaluated in two steps:

o  First, expr1 is evaluated and its value discarded.
o  Second, expr2 is evaluated; its value is the value of the entire

expression.

•  Evaluating expr1 should always have a side effect; if it
doesn’t, then expr1 serves no purpose.

•  When the comma expression ++i, i + j is evaluated,
i is first incremented, then i + j is evaluated.
o  If i and j have the values 1 and 5, respectively, the value of

the expression will be 7, and i will be incremented to 2.

64

The Comma Operator
•  The comma operator is left associative, so the

compiler interprets
 i = 1, j = 2, k = i + j

 as
 ((i = 1), (j = 2)), (k = (i + j))

•  Since the left operand in a comma expression is
evaluated before the right operand, the assignments
i = 1, j = 2, and k = i + j will be performed
from left to right.

65

The Comma Operator
•  The comma operator makes it possible to “glue” two

expressions together to form a single expression.
•  Certain macro definitions can benefit from the comma

operator.
•  The for statement is the only other place where the

comma operator is likely to be found.
•  Example:
 for (sum = 0, i = 1; i <= N; i++)
 sum += i;

•  With additional commas, the for statement could
initialize more than two variables.

66

1/30/14	

12	

The break Statement
•  The break statement can transfer control out of a

switch statement, but it can also be used to jump
out of a while, do, or for loop.

•  A loop that checks whether a number n is prime
can use a break statement to terminate the loop as
soon as a divisor is found:

 for (d = 2; d < n; d++)
 if (n % d == 0)
 break;

67

The break Statement
•  After the loop has terminated, an if statement can

be use to determine whether termination was
premature (hence n isn’t prime) or normal (n is
prime):

 if (d < n)
 printf("%d is divisible by %d\n", n, d);
 else
 printf("%d is prime\n", n);

68

The break Statement
•  The break statement is particularly useful for writing

loops in which the exit point is in the middle of the body
rather than at the beginning or end.

•  Loops that read user input, terminating when a particular
value is entered, often fall into this category:

 for (;;) {
 printf("Enter a number (enter 0 to stop): ");
 scanf("%d", &n);
 if (n == 0)
 break;
 printf("%d cubed is %d\n", n, n * n * n);
 }

69

The break Statement
•  A break statement transfers control out of the innermost

enclosing while, do, for, or switch.
•  When these statements are nested, the break statement can

escape only one level of nesting.
•  Example:
 while (…) {
 switch (…) {
 …
 break;
 …
 }
 }

•  break transfers control out of the switch statement, but
not out of the while loop.

70

The continue Statement
•  The continue statement is similar to break:

o break transfers control just past the end of a loop.
o continue transfers control to a point just before

the end of the loop body.
•  With break, control leaves the loop; with
continue, control remains inside the loop.

•  break can be used in switch statements and
loops (while, do, and for), whereas continue
is limited to loops.

71

The continue Statement
•  A loop that uses the continue statement:
 n = 0;
 sum = 0;
 while (n < 10) {
 scanf("%d", &i);
 if (i == 0)
 continue;
 sum += i;
 n++;
 /* continue jumps to here */
 }

72

1/30/14	

13	

The continue Statement
•  The same loop written without using continue:
 n = 0;
 sum = 0;
 while (n < 10) {
 scanf("%d", &i);
 if (i != 0) {
 sum += i;
 n++;
 }
 }

73

The goto Statement
•  The goto statement is capable of jumping to any statement

in a function, provided that the statement has a label.
•  A label is just an identifier placed at the beginning of a

statement:
 identifier : statement

•  A statement may have more than one label.
•  The goto statement itself has the form
 goto identifier ;

•  Executing the statement goto L; transfers control to the
statement that follows the label L, which must be in the
same function as the goto statement itself.

74

The goto Statement
•  If C didn’t have a break statement, a goto

statement could be used to exit from a loop:
 for (d = 2; d < n; d++)
 if (n % d == 0)
 goto done;
 done:
 if (d < n)
 printf("%d is divisible by %d\n", n, d);
 else
 printf("%d is prime\n", n);

75

The goto Statement
•  Consider the problem of exiting a loop from within a switch

statement.
•  The break statement doesn’t have the desired effect: it exits

from the switch, but not from the loop.
•  A goto statement solves the problem:
 while (…) {
 switch (…) {
 …
 goto loop_done; /* break won't work here */
 …
 }
 }
 loop_done: …

•  The goto statement is also useful for exiting from nested
loops.

76

Program: Balancing a Checkbook
•  Many simple interactive programs present the user with a

list of commands to choose from.
•  Once a command is entered, the program performs the

desired action, then prompts the user for another command.
•  This process continues until the user selects an “exit” or
“quit” command.

•  The heart of such a program will be a loop:
 for (;;) {
 prompt user to enter command;
 read command;
 execute command;
 }

77

Program: Balancing a Checkbook
•  Executing the command will require a switch

statement (or cascaded if statement):
 for (;;) {
 prompt user to enter command;
 read command;
 switch (command) {
 case command1: perform operation1; break;
 case command2: perform operation2; break; .
 .
 .
 case commandn: perform operationn; break;
 default: print error message; break;
 }
 }

78

1/30/14	

14	

Program: Balancing a Checkbook
•  The checking.c program, which maintains a

checkbook balance, uses a loop of this type.
•  The user is allowed to clear the account balance,

credit money to the account, debit money from the
account, display the current balance, and exit the
program.

79

Program: Balancing a Checkbook
*** ACME checkbook-balancing program ***
Commands: 0=clear, 1=credit, 2=debit, 3=balance, 4=exit

Enter command: 1
Enter amount of credit: 1042.56
Enter command: 2
Enter amount of debit: 133.79
Enter command: 1
Enter amount of credit: 1754.32
Enter command: 2
Enter amount of debit: 1400
Enter command: 2
Enter amount of debit: 68
Enter command: 2
Enter amount of debit: 50
Enter command: 3
Current balance: $1145.09
Enter command: 4

80

checking.c

/* Balances a checkbook */

#include <stdio.h>

int main(void)
{
 int cmd;
 float balance = 0.0f, credit, debit;

 printf("*** ACME checkbook-balancing program ***\n");
 printf("Commands: 0=clear, 1=credit, 2=debit, ");
 printf("3=balance, 4=exit\n\n");
 for (;;) {
 printf("Enter command: ");
 scanf("%d", &cmd);
 switch (cmd) {
 case 0:
 balance = 0.0f;
 break;

81

 case 1:
 printf("Enter amount of credit: ");
 scanf("%f", &credit);
 balance += credit;
 break;
 case 2:
 printf("Enter amount of debit: ");
 scanf("%f", &debit);
 balance -= debit;
 break;
 case 3:
 printf("Current balance: $%.2f\n", balance);
 break;
 case 4:
 return 0;
 default:
 printf("Commands: 0=clear, 1=credit, 2=debit, ");
 printf("3=balance, 4=exit\n\n");
 break;
 }
 }
}

82

The Null Statement
•  A statement can be null—devoid of symbols

except for the semicolon at the end.
•  The following line contains three statements:
 i = 0; ; j = 1;

•  The null statement is primarily good for one thing:
writing loops whose bodies are empty.

83

The Null Statement
•  Consider the following prime-finding loop:
 for (d = 2; d < n; d++)
 if (n % d == 0)
 break;

•  If the n % d == 0 condition is moved into the
loop’s controlling expression, the body of the loop
becomes empty:

 for (d = 2; d < n && n % d != 0; d++)
 /* empty loop body */ ;

•  To avoid confusion, C programmers customarily
put the null statement on a line by itself.

84

1/30/14	

15	

The Null Statement
•  Accidentally putting a semicolon after the parentheses in an if,

while, or for statement creates a null statement.
•  Example 1:
 if (d == 0); /*** WRONG ***/
 printf("Error: Division by zero\n");

 The call of printf isn’t inside the if statement, so it’s
performed regardless of whether d is equal to 0.

•  Example 2:
 i = 10;
 while (i > 0); /*** WRONG ***/
 {
 printf("T minus %d and counting\n", i);
 --i;
 }

 The extra semicolon creates an infinite loop.

85

The Null Statement
•  Example 3:
 i = 11;
 while (--i > 0); /*** WRONG ***/
 printf("T minus %d and counting\n", i);

 The loop body is executed only once; the message printed is:
 T minus 0 and counting

•  Example 4:
 for (i = 10; i > 0; i--); /*** WRONG ***/
 printf("T minus %d and counting\n", i);

 Again, the loop body is executed only once, and the same
message is printed as in Example 3.

86

