1/30/14

Control Flow Statements

Based on slides from K. N. King

Bryn Mawr College

CS246 Programming Paradigm

2

Statements

So far, we’ ve used return statements and expression
statements.

Most of C’ s remaining statements fall into three
categories:

o Selection statements: i f and switch
o Iteration statements: while, do, and for

o Jump statements: break, continue, and goto.
(return also belongs in this category.)

Other C statements:
o Compound statement
o Null statement

Logical Expressions

* In many programming languages, an expression
such as i < j would have a special “Boolean” or
“logical” type.

* In C, a comparison such as i < j yields an integer:
either 0 (false) or 1 (true).

o4

Relational Operators

C’s relational operators:

< less than

> greater than

<= less than or equal to

>= greater than or equal to

These operators produce 0 (false) or 1 (true) when
used in expressions.

The relational operators can be used to compare
integers and floating-point numbers, with operands
of mixed types allowed.

Relational Operators

* The precedence of the relational operators is lower
than that of the arithmetic operators.
o For example, 1 + 7 <k - 1 means (i+3j) < (k-
1).
* The relational operators are left associative.

.6

Relational Operators

Consider the expression

i<j<k

o Isitlegal? YES

o What does it test?
Since the < operator is left associative, this expression is
equivalent to (i <j) <k
The 1 or 0 produced by i <j is then compared to k.
How to test whether 7 lies between 1 and k?

The correct expressionis 1 < j && j < k.

Equality Operators

« C provides two equality operators:

== equal to
= not equal to

* The equality operators are left associative and produce
either 0 (false) or 1 (true) as their result.

* The equality operators have lower precedence than the
relational operators, so the expression
i<j==3]<k
is equivalent to
(1 <3) == <k

1/30/14

.8

Logical Operators

More complicated logical expressions can be built
from simpler ones by using the logical operators:

! logical negation

&& logical and

|'| logical or

The ! operator is unary, while && and | | are
binary.

The logical operators produce 0 or 1 as their result.
The logical operators treat any nonzero operand as
a true value and any zero operand as a false value.

Logical Operators

* Behavior of the logical operators:
lexpr has the value 1 if expr has the value 0.
exprl && expr2 has the value 1 if the values of expr?
and expr2 are both nonzero.
exprl | | expr2 has the value 1 if either expr? or expr2 (or
both) has a nonzero value.

* Inall other cases, these operators produce the value

0.

Logical Operators

Both && and | | perform “short-circuit” evaluation:
they first evaluate the left operand, then the right one.
If the value of the expression can be deduced from the
left operand alone, the right operand isn’ t evaluated.

Example:
(1 '=0) && (3 / 1 > 0)
(i !=0) is evaluated first. If i isn’t equal to 0, then

(3 /1>0) is evaluated.

If i is 0, the entire expression must be false, so there’s
no need to evaluate (3 / i > 0). Without short-circuit
evaluation, division by zero would have occurred.

Logical Operators

* Thanks to the short-circuit nature of the && and | |
operators, side effects in logical expressions may
not always occur.

» Example:

i >0 && ++3 > 0
If 1 > 0 is false, then ++75 > O is not evaluated, so j
isn’t incremented.

* The problem can be fixed by changing the
condition to ++3j > 0 && i > O or, even better, by
incrementing j separately.

Logical Operators

The ! operator has the same precedence as the
unary plus and minus operators.
The precedence of && and | | is lower than that
of the relational and equality operators.

o For example, 1 < j && k ==mmeans (i< 3Jj)

&& (k==m).

The ! operator is right associative; && and | |
are left associative.

The if Statement

The if statement allows a program to choose
between two alternatives by testing an expression.
In its simplest form, the if statement has the form
if (expression) statement
When an 1 f statement is executed, expression is
evaluated; if its value is nonzero, statement is
executed.
Example:
if (line num == MAX LINES)

line_num = 0;

1/30/14

The if Statement

Confusing == (equality) with = (assignment) is
perhaps the most common C programming error.
The statement

if (i == 0)

tests whether 1 is equal to 0.

The statement

if (i = 0)

assigns 0 to 1, then tests whether the result is
nonzero.

The if Statement

Often the expression in an if statement will test
whether a variable falls within a range of values.

To test whether 0 < 1 <n:

if (0 <= i && i < n)

To test the opposite condition (1 is outside the
range):

if (1 <0 |l 1 >=n)

Compound Statements

In the i f statement template, notice that statement
is singular, not plural:

if (expression) statement

To make an if statement control two or more
statements, use a compound statement.

A compound statement has the form

{ statements }

Putting braces around a group of statements forces
the compiler to treat it as a single statement.

The else Clause

An if statement may have an else clause:
else s t

if (expression) s
The statement that follows the word else is
executed if the expression has the value 0.
Example:
if (1 > 9)

max = i;
else

max = j;

The else Clause

It s not unusual for i f statements to be nested inside
other i f statements:

if (1 > 3J)
if (1 > k
max = 1i;
else
max = k;
else
if (5 > k)
max = j;
else
max = k;

Aligning each e1se with the matching i £ makes the
nesting easier to see.

The else Clause

+ To avoid confusion, don’t hesitate to add braces:
if (1> 9) |

if (i > k)
max = 1i;
else
max = k;
} else {
if (3 > k)
max = j;
else
max = k;

1/30/14

Cascaded if Statements

+ A “cascaded” if statement is often the best way to
test a series of conditions, stopping as soon as one
of them is true.

» Example:
if (n < 0)
printf("n is less than 0\n");
else
if (n == 0)
printf("n is equal to 0\n");
else

printf ("n is greater than 0\n");

Cascaded if Statements

Although the second if statement is nested inside
the first, C programmers don’ t usually indent it.

if (n < 0)

printf("n is less than 0\n");
else if (n == 0)

printf("n is equal to 0\n");
else

printf ("n is greater than 0\n");

Instead, they align each e1se with the original i f:

Cascaded if Statements

* This layout avoids the problem of excessive
indentation when the number of tests is large:
if (expression)

Statement
else if (expression)
Statement

else 1if (expression)
statement

else
Sstatement

Program: Calculating a Broker’s Commission

* When stocks are sold or purchased through a broker, the
broker’ s commission often depends upon the value of the
stocks traded.

* Suppose that a broker charges the amounts shown in the
following table:

Transaction size Commission rate
Under $2,500 $30+ 1.7%
$2,500-$6,250 $56 +0.66%

$6,250-$20,000 $76 +0.34%

$20,000-$50,000 $100 +0.22%
$50,000-$500,000 $155+0.11%
Over $500,000 $255 +0.09%

* The minimum charge is $39.

Program: Calculating a Broker’s Commission

* The broker. c program asks the user to enter the
amount of the trade, then displays the amount of
the commission:

Enter value of trade: 30000
Commission: $166.00

* The heart of the program is a cascaded i f
statement that determines which range the trade
falls into.

The “Dangling else”

When if statements are nested, the “dangling else”
problem may occur:
if (y != 0)

if (x = 0)

result = x / y;

else

printf ("Error: y is equal to 0\n");
The indentation suggests that the e 1 se clause belongs
to the outer i f statement.

However, C follows the rule that an e1se clause
belongs to the nearest i £ statement that hasn’t already
been paired with an else.

1/30/14

The “Dangling else”

* A correctly indented version would look like this:

if (y !'= 0)
if (x != 0)
result = x / y;
else

printf ("Error: y is equal to 0\n");

The “Dangling else”

To make the else clause part of the outer i £
statement, we can enclose the inner i f statement
in braces:
if (y = 0) {

if (x != 0)

result = x / y;

} else

printf ("Error: y is equal to 0\n");
Using braces in the original if statement would
have avoided the problem in the first place.

Conditional Expressions

« C’s conditional operator allows an expression to
produce one of two values depending on the value
of a condition.

* The conditional operator consists of two symbols
(? and :), which must be used together:
exprl ? expr2 : expr3

* The operands can be of any type.

* The resulting expression is said to be a conditional
expression.

Conditional Expressions

The conditional operator requires three operands,
so it is often referred to as a ternary operator.

The conditional expression exprl ? expr2 : expr3
should be read “if expr! then expr?2 else expr3.”
The expression is evaluated in stages: expr/ is
evaluated first; if its value isn’ t zero, then expr2 is
evaluated, and its value is the value of the entire
conditional expression.

If the value of expr! is zero, then the value of
expr3 is the value of the conditional.

Conditional Expressions

* Example:
int i, 3, k;

i=1;

2;

i>321i: 3; /* k is now 2 */
k=1(i>024i:0)+3; /*kisnow3*/
The parentheses are necessary, because the
precedence of the conditional operator is less than
that of the other operators discussed so far, with the
exception of the assignment operators.

PO

Conditional Expressions

* Calls of printf can sometimes benefit from
condition expressions. Instead of
if (1 > 9)
printf ("$d\n", 1i);
else
printf ("%d\n", j):
we could simply write
printf("%d\n", 1 > j ? 1 : J);

Conditional expressions are also common in
certain kinds of macro definitions.

®31

1/30/14

Boolean Values in C99

* (C99’s <stdbool.h> header makes it easier to work
with Boolean values.

* It defines a macro, bool, that stands for Bool.

e If<stdbool.h> is included, we can write
bool flag; /* same as _Bool flag; */

* <stdbool.h> also supplies macros named true
and false, which stand for 1 and 0, respectively,
making it possible to write
flag = false;

flag = true;

The switch Statement

¢ Acascaded if statement can be used to compare an
expression against a series of values:

if (grade == 4)
printf ("Excellent");
else if (grade == 3)

printf ("Good") ;
else if (grade == 2)
printf ("Average");

else if (grade == 1)
printf ("Poor");
else if (grade == 0)

printf ("Failing");
else

printf ("Illegal grade");

33

The switch Statement

* The switch statement is an alternative:
switch (grade) {
4:

case printf ("Excellent");
break;

case 3: printf("Good");
break;

case 2: printf ("Average");
break;

case 1l: printf("Poor");
break;

case 0: printf("Failing");
break;

default: printf("Illegal grade");
break;

The switch Statement

* A switch statement may be easier to read than a
cascaded if statement.

* switch statements are often faster than i £
statements.

* Most common form of the switch statement:

switch (expression) {
case constant-expression : statements

case constant-expression : statements
default : statements

*35

The switch Statement

» The word switch must be followed by an integer
expression—the controlling expression—in
parentheses.

* Characters are treated as integers in C and thus can
be tested in switch statements.

* Floating-point numbers and strings don’ t qualify,
however.

.37

The switch Statement

Each case begins with a label of the form

case (‘()I'I.\'[{[I'I[-(’,\'/)I'C.iﬂ\'l‘()l'l H

A constant expression is much like an ordinary
expression except that it can’t contain variables or
function calls.

o 5 is a constant expression, and 5 + 10 is a constant
expression, but n + 10 isn’t a constant expression
(unless n is a macro that represents a constant).

The constant expression in a case label must
evaluate to an integer (characters are acceptable).

1/30/14

The switch Statement

» After each case label comes any number of
statements.

* No braces are required around the statements.

* The last statement in each group is normally
break.

*39

The switch Statement

Duplicate case labels aren’t allowed.

The or,der of the cases doesn’ t matter, and the default case
doesn "t need to come last.

Several case labels may precede a group of statements:
switch (grade) {

case 4

case 3:

case 2:

case 1: printf("Passing");
break;

case 0: rintf ("Failing");

reaxk;
default: printf("Illegal grade");
] break;

If the default case is missing and the controlling expression’ s
value doesn’ t match any case label, control passes to the next
statement after the switch.

The break Statement

» Without break (or some other jump statement) at the
end of a case, control will flow into the next case.

* Example:
switch (grade) {

case 4: printf("Excellent");

case 3: printf("Good");

case 2: printf("Average");

case 1: printf("Poor");
case 0: printf("Failing");

1lt: printf("Illegal grade");

}

* If the value of grade is 3, the message printed is
GoodAveragePoorFailingIllegal grade

Program: Printing a Date

Contracts and other legal documents are often dated in
the following way:

Dated this day of s 205N
The date. c program will display a date in this form
after the user enters the date in month/day/year form:
Enter date (mm/dd/yy): 7/19/14

Dated this 19th day of July, 2014.

The program uses swi tch statements to add “th” (or
“st” or “nd” or “rd”) to the day, and to print the month
as a word instead of a number.

date.c
/* Prints a date in legal form */
#include <stdio.h>

int main(void)

{

int month, day, year;

printf ("Enter date (mm/dd/yy): ");
scanf ("%d /%d /%d", &month, &day, &year);

printf("Dated this %d", day);
switch (day) {
case 1: case 21: case 31:
printf("st"); break;
case 2: case 22:
printf ("nd"); break;
case 3: case 23:
printf ("rd"); break;
default: printf("th"); break;
}
printf (" day of ");

}

switch (month) {
case 1: printf("January"); break;
case 2 printf("February"); break;
case 3: printf("March"); break;
case 4: printf("April"); break;
case 5: printf("May"); break;
case 6 printf ("June"); break;
case 7: printf("July"); break;
case 8: printf("August"); break;
case 9: printf("September"); break;
case 10: printf("October"); break;
case 11: printf("November"); break;
case 12: printf ("December"); break;

}

printf (", 20%.2d.\n", year);

return 0;

1/30/14

lteration Statements

* C provides three iteration statements:

o The while statement is used for loops whose
controlling expression is tested before the loop body is
executed.

o The do statement is used if the expression is tested
affer the loop body is executed.

o The for statement is convenient for loops that
increment or decrement a counting variable.

The while Statement

Using a while statement is the easiest way to set
up a loop.

The while statement has the form

while (expression) statement

expression is the controlling expression; statement
is the loop body.

The while Statement

» Example of a while statement:

while (i < n) /* controlling expression */
i=1*2; /* loop body */

* When a while statement is executed, the
controlling expression is evaluated first.

* Ifits value is nonzero (true), the loop body is
executed and the expression is tested again.

* The process continues until the controlling
expression eventually has the value zero.

The while Statement

A while statement that computes the smallest power of
2 that is greater than or equal to a number n:

i=1;

th:. le (i < n)

i=1*2;
A trace of the loop when n has the value 10:
it= 1; iisnow 1.
Isi<n? Yes; continue.
i=1%*2; i is now 2.
Isi<n? Yes; continue.
i=1i*2; iis now 4.
Isi<n? Yes; continue.
i=1*2; iisnow 8.
Isi<n? Yes; continue.
o, SR i is now 16.
Isi<n? No; exit from loop.

The while Statement

* The following statements display a series of
“countdown” messages:
i = 10;
while (i > 0) {
printf ("T minus %d and counting\n", 1i);
i--;
}
* The final message printed is T minus 1 and
counting.

Infinite Loops

* Awhile statement won’t terminate if the controlling
expression always has a nonzero value.

* C programmers sometimes deliberately create an
infinite loop by using a nonzero constant as the
controlling expression:
while (1) ..

¢ Awhile statement of this form will execute forever
unless its body contains a statement that transfers
control out of the loop (break, goto, return) or
calls a function that causes the program to terminate.

1/30/14

Program: Summing Numbers

The sum. c program sums a series of integers
entered by the user:

This program sums a series of integers.
Enter integers (0 to terminate): 8 23 71 5 0
The sum is: 107

The program will need a loop that uses scanf to
read a number and then adds the number to a
running total.

sum.cC
/* Sums a series of numbers */
#include <stdio.h>
int main(void)
int n, sum = 0;

printf ("This program sums a series of integers.\n");
printf ("Enter integers (0 to terminate): ");

scanf ("%d", &n);
while (n != 0) {
sum += n;
scanf ("%d", &n);
}
printf ("The sum is: %d\n", sum);

return 0;

The do Statement

General form of the do statement:

do statement while (expression) ;

When a do statement is executed, the loop body is
executed first, then the controlling expression is
evaluated.

If the value of the expression is nonzero, the loop
body is executed again and then the expression is
evaluated once more.

The do Statement

i =10;

do {
printf ("T minus %d and counting\n", 1i);
__j_’-

} while (i > 0);
* The do statement is often indistinguishable from the
while statement.

The only difference is that the body of a do
statement is always executed at least once.

The countdown example rewritten as a do statement:

Program: Calculating the
Number of Digits in an Integer

The numdigits. c program calculates the
number of digits in an integer entered by the user:
Enter a nonnegative integer: 60

The number has 2 digit(s).

The program will divide the user’s input by 10
repeatedly until it becomes 0; the number of
divisions performed is the number of digits.
Writing this loop as a do statement is better than
using a while statement, because every integer—
even 0—has at least one digit.

numdigits.c
/* Calculates the number of digits in an integer */
#include <stdio.h>
int main(void)
: int digits = 0, n;

printf ("Enter a nonnegative integer: ");
scanf ("%d", &n);

do {
n /= 10;
digits++;
} while (n > 0);
printf ("The number has %d digit(s).\n", digits);

return 0;

1/30/14

The for Statement

The for statement is ideal for loops that have a
“counting” variable, but it’ s versatile enough to be
used for other kinds of loops as well.
General form of the for statement:
for (exprl ; expr2 ; expr3) statement
exprl, expr2, and expr3 are expressions.
Example:
for (i = 10; 1 > 0; i--)
printf ("T minus %d and counting\n", 1i);

The for Statement

The for statement is closely related to the while
statement.

Except in a few rare cases, a for loop can always be
replaced by an equivalent while loop:
exprl;
while (expr2) {
Statement
expr3;
}
exprl is an initialization step that’ s performed only
once, before the loop begins to execute.

The for Statement

expr2 controls loop termination (the loop continues
executing as long as the value of expr2 is nonzero).
expr3 is an operation to be performed at the end of
each loop iteration.
The result when this pattern is applied to the previous
for loop:
i=10;
while (i > 0) {

printf ("T minus %d and counting\n", 1i);

sl==h

Omitting Expressions in a
for Statement

C allows any or all of the expressions that control a
for statement to be omitted.
If the first expression is omitted, no initialization is
performed before the loop is executed:
i=10;
for (; 1 > 0; --1i)

printf ("T minus %d and counting\n", i);
If the third expression is omitted, the loop body is
responsible for ensuring that the value of the second
expression eventually becomes false:
for (i = 10; i > 0;)

printf ("T minus %d and counting\n", i--);

Omitting Expressions in a
for Statement

When the first and third expressions are both
omitted, the resulting loop is nothing more than a
while statement in disguise:
for (; 1 > 0;)

printf ("T minus %d and counting\n", i--);
is the same as
while (i > 0)

printf ("T minus %d and counting\n", i--);
The while version is clearer and therefore
preferable.

10

1/30/14

Omitting Expressions in a
for Statement

If the second expression is missing, it defaults to a
true value, so the for statement doesn’t terminate
(unless stopped in some other fashion).

For example, some programmers use the following
for statement to establish an infinite loop:

for (;7)

for Statements in C99

In C99, the first expression in a for statement can be
replaced by a declaration.

This feature allows the programmer to declare a
variable for use by the loop:

for (int i = 0; 1 < n; i++)

The variable 1 need not have been declared prior to
this statement.

A for statement may declare more than one variable,
provided that all variables have the same type:

for (int 1 = 0, j = 0; i < n; i++)

The Comma Operator

On occasion, a for statement may need to have
two (or more) initialization expressions or one that
increments several variables each time through the
loop.

This effect can be accomplished by using a comma
expression as the first or third expression in the
for statement.

A comma expression has the form

exprl , expr2

where exprl and expr2 are any two expressions.

The Comma Operator

A comma expression is evaluated in two steps:

o First, expr/ is evaluated and its value discarded.

o Second, expr? is evaluated; its value is the value of the entire

expression.

Evaluating exprl should always have a side effect; if it
doesn’t, then exprl serves no purpose.
When the comma expression ++1, i + J is evaluated,
1 is first incremented, then 1 + j is evaluated.

o If i and j have the values 1 and 5, respectively, the value of
the expression will be 7, and 1 will be incremented to 2.

The Comma Operator

The comma operator is left associative, so the
compiler interprets

i=1, 3=2, k=1 + 3

as

((1=1), (3 =2)), (k= (i + 3))

Since the left operand in a comma expression is
evaluated before the right operand, the assignments
i=1, 3J=2,and k =1 + J will be performed
from left to right.

The Comma Operator

The comma operator makes it possible to “glue” two
expressions together to form a single expression.
Certain macro definitions can benefit from the comma
operator.
The for statement is the only other place where the
comma operator is likely to be found.
Example:
for (sum = 0, i = 1; 1 <= N; i++)

sum += 1i;
With additional commas, the for statement could
initialize more than two variables.

11

The break Statement

* The break statement can transfer control out of a
switch statement, but it can also be used to jump
out ofawhile, do, or for loop.

* A loop that checks whether a number n is prime
can use a break statement to terminate the loop as
soon as a divisor is found:
for (d = 2; d < n; d++)

if (n $ d == 0)
break;

1/30/14

The break Statement

* After the loop has terminated, an if statement can
be use to determine whether termination was
premature (hence n isn’ t prime) or normal (n is
prime):
if (d < n)

printf ("%d is divisible by %d\n", n, d);
else
printf ("%d is prime\n", n);

The break Statement

The break statement is particularly useful for writing
loops in which the exit point is in the middle of the body
rather than at the beginning or end.

Loops that read user input, terminating when a particular
value is entered, often fall into this category:
for (;;) |

printf ("Enter a number (enter 0 to stop): ");

scanf ("%d", &n);

if (n == 0)

break;
printf ("%d cubed is %d\n", n, n * n * n);

The break Statement

* Abreak statement transfers control out of the innermost

enclosing while, do, for, or switch.

* When these statements are nested, the break statement can

escape only one level of nesting.
Example:
while (.) {
switch (..) {
greak:
N
}

* break transfers control out of the switch statement, but

not out of the while loop.

The continue Statement

The continue statement is similar to break:
o break transfers control just past the end of a loop.
o continue transfers control to a point just before
the end of the loop body.
With break, control leaves the loop; with
continue, control remains inside the loop.
break can be used in switch statements and
loops (while, do, and for), whereas continue
is limited to loops.

The continue Statement

A loop that uses the continue statement:
n=20;
sum = 0;
while (n < 10) {
scanf ("%sd", &i);

if (1 == 0)

continue;
sum += 1i;
n++;

/* continue jumps to here */

}

12

The continue Statement

* The same loop written without using continue:
n=20;
sum = 0;
while (n < 10) {
scanf ("%d", &i);

if (1 !'= 0) {
sum += i;
n++;

1/30/14

The goto Statement

* The goto statement is capable of jumping to any statement
in a function, provided that the statement has a label.

* Alabel is just an identifier placed at the beginning of a
statement:
identifier : statement

* A statement may have more than one label.

¢ The goto statement itself has the form
goto identifier ;

Executing the statement goto L; transfers control to the
statement that follows the label L, which must be in the
same function as the goto statement itself.

The goto Statement

If C didn’ t have a break statement, a goto
statement could be used to exit from a loop:
for (d = 2; d < n; d++)

if (n % d == 0)

goto done;

done:
if (d < n)

printf ("%d is divisible by %d\n", n, d);
else

printf ("$d is prime\n", n);

The goto Statement

 Consider the problem of exiting a loop from within a switch
statement.

* The break statement doesn’ t have the desired effect: it exits
from the switch, but not from the loop.

¢ A goto statement solves the problem:

while (..) {
switch (..) {

goto loop_done; /* break won't work here */
)&
}
loop_done: ..

* The goto statement is also useful for exiting from nested
loops.

Program: Balancing a Checkbook

¢ Many simple interactive programs present the user with a
list of commands to choose from.
¢ Once a command is entered, the program performs the
desired action, then prompts the user for another command.
« This process continues until the user selects an “exit” or
“quit” command.
¢ The heart of such a program will be a loop:
for (;;) {
prompt user to enter command ;

read command;
execute command ;

Program: Balancing a Checkbook

» Executing the command will require a switch
statement (or cascaded if statement):
for (;;) {
prompt user to enter command,
read command ;
switch (command) {
case command,: perform operation,; break;
case command,: perform operation,; break;

case command,: perform operation,; break;
default: print error message; break;

13

1/30/14

Program: Balancing a Checkbook

* The checking. c program, which maintains a
checkbook balance, uses a loop of this type.

* The user is allowed to clear the account balance,
credit money to the account, debit money from the
account, display the current balance, and exit the
program.

Program: Balancing a Checkbook

*** ACME checkbook-balancing program ***
Commands: O=clear, l=credit, 2=debit, 3=balance, 4=exit

Enter command: 1

Enter amount of credit: 1042.56
Enter command: 2

Enter amount of debit: 133.79
Enter command: 1

Enter amount of credit: 1754.32
Enter command: 2

Enter amount of debit: 1400
Enter command: 2

Enter amount of debit: 68
Enter command: 2

Enter amount of debit: 50

Enter command: 3

Current balance: $1145.09

Enter command: 4

checking.c
/* Balances a checkbook */
#include <stdio.h>

int main(void)
{
int cmd;
float balance = 0.0f, credit, debit

printf ("*** ACME checkbook-balancing program ***\n");
printf ("Commands: O=clear, l=credit, 2=debit, ");
printf ("3=balance, 4=exit\n\n");
for (;;) {
printf ("Enter command: ");
scanf ("%d", &cmd);
switch (cmd) {
case 0:
balance = 0.0f;
break;

case 1:
printf ("Enter amount of credit: ");
scanf ("$f";—§credit);
balance += credit;
break;
case 2:
printf ("Enter amount of debit: ");
scanf ("$f", &debit);
balance -= debit;
break;
case 3:
printf ("Current balance: $%.2f\n", balance);
break;
case 4:
return 0;
default:
printf ("Commands: O=clear, l=credit, 2=debit, ");
printf ("3=balance, 4=exit\n\n");
break;

The Null Statement

* A statement can be null—devoid of symbols
except for the semicolon at the end.

*» The following line contains three statements:
i=0;;3=1;

* The null statement is primarily good for one thing:
writing loops whose bodies are empty.

The Null Statement

* Consider the following prime-finding loop:

for (d = 2; d < n; d++4)
if (n % d == 0)
break;

* Ifthe n $ d == 0 condition is moved into the
loop’ s controlling expression, the body of the loop
becomes empty:
for (d =2; d<n && n % d !'= 0; d++)

/* empty loop body */

* To avoid confusion, C programmers customarily

put the null statement on a line by itself.

14

1/30/14

.85

The Null Statement

Accidentally putting a semicolon after the parentheses in an i f,
while, or for statement creates a null statement.
Example 1:
if (d == 0);

printf ("Error: Division by zero\n");
The call of print £ isn’t inside the i f statement, so it’s
performed regardless of whether d is equal to 0.
Example 2:
i=10;
\zzhile (i>0);

/*** WRONG ***/

/*** WRONG ***/

printf ("T minus %d and counting\n", 1i);
—-i;
¥

The extra semicolon creates an infinite loop.

The Null Statement

Example 3:

i=11;

while (--i > 0); /*** WRONG ***/
printf ("T minus %d and counting\n", 1i);

The loop body is executed only once; the message printed is:

T minus 0 and counting

Example 4:

for (i = 10; i > 0; i--); /*** WRONG ***/
printf ("T minus %d and counting\n", 1i);

Again, the loop body is executed only once, and the same

message is printed as in Example 3.

15

