Arrays

Based on slides from K. N. King

Bryn Mawr College
CS246 Programming Paradigm

2/11/14

Arrays

* To store a large number of data of homogenous
type (e.g. int only)
* Schematic representation

k-2 k-1 index

NI

element

Array Operations

Declaration
int a[5];

size

Assignment
a[0] = 1;

index

Reference !
int y = a[0]; ___-----"~

index

o4

Array Initialization

An array can be initialized at the time it” s declared.

int afl10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

If the initializer is shorter than the array, the remaining elements
of the array are given the value 0:

int a[l0] = {1, 2, 3, 4, 5, 6};

/* initial value of a is
{1, 2, 3, 4, 5, 6, 0, 0, 0, 0} */

It’s illegal for an initializer to be

o completely empty.

o longer than the array it initializes.
When the length of the array is omitted, the compiler uses the
length of the initializer to determine how long the array is.
int af] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

Array Subscripting

* Expressions of the form a [1] are lvalues, so they
can be used in the same way as ordinary variables:

a[0] = 1;
printf ("$d\n", al5]);
++al[i];

In general, if an array contains elements of type 7,
then each element of the array is treated as if it
were a variable of type 7.

.6

Array Subscripting

C doesn’ t require that subscript bounds be
checked; if a subscript goes out of range, the
program’s behavior is undefined.
A common mistake: forgetting that an array with n
elements is indexed from 0 to n — 1, not 1 to n:
int a[10], 1i;
for (i = 1; i <= 10; i++)

afi] = 0;
With some compilers, this innocent-looking for
statement causes an infinite loop.




2/11/14

Array Subscripting

An array subscript may be any integer expression:
a[i+j*10] = 0;
The expression can even have side effects:
al, SR
while (i < N)
afi++] = 0;
Be careful when an array subscript has a side effect:
i=0;
while (i < N)
a[i] = bl[i++];
The expression a [1] = b [i++] accesses the value of i
and also modifies i, causing undefined behavior.

Arrays and Characters

int main() {
int digits[10] = {0}, i; char c;

while((c = getchar()) !'= EOF) ({

if (¢ >= '0' && c <= '9"'")
digits[c-'0']++;

return O;

Program: Checking a Number for Repeated Digits

The program checks whether any of the digits in a
number appear more than once.

After the user enters a number, the program prints
either Repeated digit or No repeated
digit:

Enter a number: 28212

Repeated digit

The number 28212 has a repeated digit (2); a
number like 9357 doesn’t.

repdigit.c
/* Checks numbers for repeated digits */

#include <stdio.h>
#define FALSE 0
#define TRUE 1

int main(void) {
int digit_seen[10] = {FALSE};
int digity
long n;

printf("Enter a number: ");
scanf ("%1d", &n);
while (n > 0) {
digit = n % 10;
if (digit seen{digit])
reak; —
di?it seen[digit] = TRUE;
n /= T0;
}
if (n > 0)
printf ("Repeated digit\n");
else
printf("No repeated digit\n");

] return 0;

sizeof and Arrays

The sizeof operator can determine the size of an array (in
bytes).

If a is an array of 10 integers, then sizeof (a) is typically
40 (assuming that each integer requires 4 bytes).

Use sizeof to test the length of an array:

for (1 =0; 1 < (int) (sizeof(a) / sizeof(al[0])); i++)
a[i] = 0;

Defining a macro for the size calculation:

#define SIZE ((int) (sizeof(a) / sizeof(a[0])))

for (1 = 0; 1 < SIZE; i++)
ali] = 0;

Multidimensional Arrays

An array may have any number of dimensions.

The following declaration creates a two-dimensional array
(matrix):

int m([5][9];

m has 5 rows and 9 columns. Both rows and columns are
indexed from 0:




Multidimensional Arrays

* Although we visualize two-dimensional arrays as
tables, that’ s not the way they e actually stored in
computer memory.

» C stores arrays in row-major order, with row 0
first, then row 1, and so forth.

* How the m array is stored:

2/11/14

Initialization

We can create an initializer for a two-dimensional array
by nesting one-dimensional initializers:

int m{5](9]1 = ({1, 1, 1, 1, 1, O, 1, 1, 1},
(, 1, 0,1, 0,1, 0, 1, 0},
(, 1, 0,1, 1, 0, 0, 1, 0},
(t, 1, 0, 1, 0, 0, O, 1, O},
{1, 1, 0, 1, 0, 0, 1, 1, 1}};

Initializers for higher-dimensional arrays are

constructed in a similar fashion.

If an initializer isn’t large enough to fill a

multidimensional array, the remaining elements are

given the value 0.

int m(5][9] = {(1, 1, 1, 1, 1, 0, 1, 1, 1},
1

1
1, 0}

row 0 row 1 row 4
—
N > £ N |
éyy A' 5?\ 5@‘ ) QQV‘A ) 5& ®\I
*13
Constant Arrays

* An array can be made “constant” by starting its
declaration with the word const:

const char hex_chars[] =
(101, 11°, 120, 137, rav, 150, vgr, 170, vgr, tor,
‘At TBY. tCr. D, EY. UEY);
* Anarray that’s been declared const should not
be modified by the program.

Program: Dealing a Hand of Cards

* The program deals a random hand from a standard
deck of playing cards.

* Each card in a standard deck has a suif (clubs,
diamonds, hearts, or spades) and a rank (two, three,
four, five, six, seven, eight, nine, ten, jack, queen,
king, or ace).

* The user will specify how many cards should be in
the hand:

Enter number of cards in hand: 5
Your hand: 7c 2s 5d as 2h

Program: Dealing a Hand of Cards

* Problems to be solved:
o How do we pick cards randomly from the deck?

¢ time (from <time.h>) - returns the current time,
encoded in a single number.

 srand (from <stdlib.h>) — initializes C s
random number generator.

e rand (from <stdlib.h>) - produces an
apparently random number each time it’s called.

o How do we avoid picking the same card twice?

Program: Dealing a Hand of Cards

* How do we keep track of which cards have already
been chosen?

o The in_hand array with 4 rows and 13 columns;

o All elements of the array will be false to start with.

o Each time we pick a card at random, we’ 1l check
whether the element of in_hand corresponding to that
card is true or false.

« Ifit’s true, we’ Il have to pick another card.

« Ifit’s false, we 1l store t rue in that element to remind us later
that this card has already been picked.




2/11/14

Program: Dealing a Hand of Cards

» Once we’ ve verified that a card is “new,” how to
print the card?
o translate its numerical rank and suit into characters
and then display the card.
o two arrays of characters
« one for the rank and one for the suit
« use the numbers to subscript the arrays.

« These arrays won’ t change during program
execution, so they are declared to be const.

/* Deals

#include
#include
#include
#include

deal.c
a random hand of cards */

<stdbool.h> /* C99 only */
<stdio.h>

<stdlib.h>

<time.h>

#define NUM_SUITS 4
#define NUM_RANKS 13

int main(void)

{

bool in_hand[NUM_SUITS] [NUM_RANKS] = {false};

int num_cards, rank, suit;

const char rank_code[] = {'2','3','4','5','6','7"','8",
o, e, '3, g, Tk, talt )

const char suit_code[] = {'c','d','h',"'s"};

srand ( (unsigned) time (NULL));

printf ("Enter number of cards in hand: ");
scanf ("%d", &num_cards);

printf ("Your hand:");
while (num_cards > 0) {

suit = rand() % NUM_SUITS; /* picks a random suit */
rank = rand() % NUM_RANKS; /* picks a random rank */
if (!in_hand[suit] [rank]) {
in_hand[suit] [rank] = true;
num_cards--;
printf (" %c%c", rank code[rank], suit_code[suit]);
}
}
printf ("\n");
return 0;




