
2/11/14	

1	

Arrays

Based on slides from K. N. King

Bryn Mawr College
CS246 Programming Paradigm

1 2

Arrays
•  To store a large number of data of homogenous

type (e.g. int only)
•  Schematic representation

element

0 1 2 k-2 k-1 index

3

Array Operations

•  Declaration
int a[5];

•  Assignment
a[0] = 1;

•  Reference
int y = a[0];

a ? ? ? ? ?

a
0 4

? ? ? ? 1

size

index

index

Array Initialization
•  An array can be initialized at the time it’s declared.
 int a[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

•  If the initializer is shorter than the array, the remaining elements
of the array are given the value 0:

 int a[10] = {1, 2, 3, 4, 5, 6};
 /* initial value of a is
 {1, 2, 3, 4, 5, 6, 0, 0, 0, 0} */

•  It’s illegal for an initializer to be
o  completely empty.
o  longer than the array it initializes.

•  When the length of the array is omitted, the compiler uses the
length of the initializer to determine how long the array is.

 int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

4

Array Subscripting
•  Expressions of the form a[i] are lvalues, so they

can be used in the same way as ordinary variables:
 a[0] = 1;
 printf("%d\n", a[5]);
 ++a[i];

•  In general, if an array contains elements of type T,
then each element of the array is treated as if it
were a variable of type T.

5

Array Subscripting
•  C doesn’t require that subscript bounds be

checked; if a subscript goes out of range, the
program’s behavior is undefined.

•  A common mistake: forgetting that an array with n
elements is indexed from 0 to n – 1, not 1 to n:

 int a[10], i;

 for (i = 1; i <= 10; i++)
 a[i] = 0;

 With some compilers, this innocent-looking for
statement causes an infinite loop.

6

2/11/14	

2	

Array Subscripting
•  An array subscript may be any integer expression:
 a[i+j*10] = 0;

•  The expression can even have side effects:
 i = 0;
 while (i < N)
 a[i++] = 0;

•  Be careful when an array subscript has a side effect:
 i = 0;
 while (i < N)
 a[i] = b[i++];

•  The expression a[i] = b[i++] accesses the value of i
and also modifies i, causing undefined behavior.

7 8

Arrays and Characters
int main() {
 int digits[10] = {0}, i; char c;

 while((c = getchar()) != EOF) {
 if (c >= '0' && c <= '9')
 digits[c-'0']++;
 }

 return 0;
}

Program: Checking a Number for Repeated Digits

•  The program checks whether any of the digits in a
number appear more than once.

•  After the user enters a number, the program prints
either Repeated digit or No repeated
digit:

 Enter a number: 28212
 Repeated digit

•  The number 28212 has a repeated digit (2); a
number like 9357 doesn’t.

9

repdigit.c

/* Checks numbers for repeated digits */

#include <stdio.h>
#define FALSE 0
#define TRUE 1

int main(void){
 int digit_seen[10] = {FALSE};
 int digit;
 long n;

 printf("Enter a number: ");
 scanf("%ld", &n);
 while (n > 0) {
 digit = n % 10;
 if (digit_seen[digit])
 break;
 digit_seen[digit] = TRUE;
 n /= 10;
 }
 if (n > 0)
 printf("Repeated digit\n");
 else
 printf("No repeated digit\n");

 return 0;
}

10

sizeof and Arrays
•  The sizeof operator can determine the size of an array (in

bytes).
•  If a is an array of 10 integers, then sizeof(a) is typically

40 (assuming that each integer requires 4 bytes).
•  Use sizeof to test the length of an array:
 for (i = 0; i < (int) (sizeof(a) / sizeof(a[0])); i++)
 a[i] = 0;

•  Defining a macro for the size calculation:
 #define SIZE ((int) (sizeof(a) / sizeof(a[0])))

 for (i = 0; i < SIZE; i++)
 a[i] = 0;

11

Multidimensional Arrays
•  An array may have any number of dimensions.
•  The following declaration creates a two-dimensional array

(matrix):
 int m[5][9];

•  m has 5 rows and 9 columns. Both rows and columns are
indexed from 0:

12

2/11/14	

3	

Multidimensional Arrays
•  Although we visualize two-dimensional arrays as

tables, that’s not the way they’re actually stored in
computer memory.

•  C stores arrays in row-major order, with row 0
first, then row 1, and so forth.

•  How the m array is stored:

13

Initialization
•  We can create an initializer for a two-dimensional array

by nesting one-dimensional initializers:
 int m[5][9] = {{1, 1, 1, 1, 1, 0, 1, 1, 1},
 {0, 1, 0, 1, 0, 1, 0, 1, 0},
 {0, 1, 0, 1, 1, 0, 0, 1, 0},
 {1, 1, 0, 1, 0, 0, 0, 1, 0},
 {1, 1, 0, 1, 0, 0, 1, 1, 1}};

•  Initializers for higher-dimensional arrays are
constructed in a similar fashion.

•  If an initializer isn’t large enough to fill a
multidimensional array, the remaining elements are
given the value 0.

 int m[5][9] = {{1, 1, 1, 1, 1, 0, 1, 1, 1},
 {0, 1, 0, 1, 0, 1, 0, 1, 0},
 {0, 1, 0, 1, 1, 0, 0, 1, 0}};

14

Constant Arrays
•  An array can be made “constant” by starting its

declaration with the word const:
 const char hex_chars[] =
 {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
 'A', 'B', 'C', 'D', 'E', 'F'};

•  An array that’s been declared const should not
be modified by the program.

15

Program: Dealing a Hand of Cards
•  The program deals a random hand from a standard

deck of playing cards.
•  Each card in a standard deck has a suit (clubs,

diamonds, hearts, or spades) and a rank (two, three,
four, five, six, seven, eight, nine, ten, jack, queen,
king, or ace).

•  The user will specify how many cards should be in
the hand:

 Enter number of cards in hand: 5
 Your hand: 7c 2s 5d as 2h

16

Program: Dealing a Hand of Cards
•  Problems to be solved:

o How do we pick cards randomly from the deck?
•  time (from <time.h>) – returns the current time,

encoded in a single number.
•  srand (from <stdlib.h>) – initializes C’s

random number generator.
•  rand (from <stdlib.h>) – produces an

apparently random number each time it’s called.
o How do we avoid picking the same card twice?

17

Program: Dealing a Hand of Cards
•  How do we keep track of which cards have already

been chosen?
o  The in_hand array with 4 rows and 13 columns;
o All elements of the array will be false to start with.
o  Each time we pick a card at random, we’ll check

whether the element of in_hand corresponding to that
card is true or false.

•  If it’s true, we’ll have to pick another card.
•  If it’s false, we’ll store true in that element to remind us later

that this card has already been picked.

18

2/11/14	

4	

Program: Dealing a Hand of Cards
•  Once we’ve verified that a card is “new,” how to

print the card?
o  translate its numerical rank and suit into characters

and then display the card.
o  two arrays of characters

•  one for the rank and one for the suit
•  use the numbers to subscript the arrays.
•  These arrays won’t change during program

execution, so they are declared to be const.

19

deal.c

/* Deals a random hand of cards */

#include <stdbool.h> /* C99 only */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define NUM_SUITS 4
#define NUM_RANKS 13

int main(void)
{
 bool in_hand[NUM_SUITS][NUM_RANKS] = {false};
 int num_cards, rank, suit;
 const char rank_code[] = {'2','3','4','5','6','7','8',
 '9','t','j','q','k','a'};
 const char suit_code[] = {'c','d','h','s'};

20

 srand((unsigned) time(NULL));

 printf("Enter number of cards in hand: ");
 scanf("%d", &num_cards);

 printf("Your hand:");
 while (num_cards > 0) {
 suit = rand() % NUM_SUITS; /* picks a random suit */
 rank = rand() % NUM_RANKS; /* picks a random rank */
 if (!in_hand[suit][rank]) {
 in_hand[suit][rank] = true;
 num_cards--;
 printf(" %c%c", rank_code[rank], suit_code[suit]);
 }
 }
 printf("\n");

 return 0;
}

21

