Functions

Based on slides from K. N. King and Dianna Xu

Bryn Mawr College
(CS246 Programming Paradigm

2/25/14

Functions

* Function: Unit of operation

o A series of statements grouped together with a
given name

¢ Must have the main function
« C functions are stand-alone

* Most programs contain multiple function
definitions

o Must be declared/defined before being used

Identify Repeated Code

int main() {
int choice;

printf ("=== Expert System ===\n");
printf ("Questionl: ...\n");
printf (

"1l. Yes\n"

"0. No\n"

"Enter the number corresponding to your choice: ");
scanf ("%d", &choice);

if (choice == 1) { /* yes */
printf("Question 2: ...\n");
printf (
"1l. Yes\n"
"0. No\n"
"Enter the number corresponding to your choice: ");
scanf ("%d", &choice);
/* skipped */

Identify Repeated Code

int menuChoice() {
int choice;

printf (
"1l. Yes\n"
"0. No\n"

"Enter the number corresponding to your choice: ");
scanf ("%d", &choice) ;
return choice;

}

int main() {
int choice;

printf (" Expert System ===\n");
printf ("Questionl: \n") ;
choice = menuChoice

if (choice == 1) { /* yes */
printf ("Question 2: ...\n");

choice = menuChoice () ;

/% skipped */

Identify Similar Code

int main() {
int choice; double km, mile;
scanf ("%d", &choice);

switch (choice) {

case 1:
printf ("Enter a mile value: "); imi
scanf ("$1f", &mile); Slmllar
km = mile * 1.6; unit
printf ("$f mile(s) = %f km\n", mile, km);
break;

caes 2:
printf ("Enter a km value: "); .
scanf ("$1£", &km); Similar
mile = km / 1.6; unit

printf ("$f km = $£ mile(s)\n", km, mile);
break;

default:
printf ("\n*** error: invalid choice ***\n");

Use Parameters to Customize

void km_mile_conv(int choice) {
int input;
printf ("Enter a %s value: ", choice==1?"mile":"km");
scanf ("$1f", &input);
if (choice ==

printf ("$£ mile(s) = %£ km(s)\n", input, input*1.6);
else
printf ("$£ km(s) = %f mile(s)\n", input, input/1.6);

}
int main() {
int choice;
scanf ("%d", &choice);
switch (choice) {
case 1:
km_mile conv(choice) ;
break;
caea 2:
km_mile conv(choice);
break;
/* more cases */ More readable main
}

2/25/14

Function-oriented

* C came before OO concept

* C program resemble java programs with a single
giant class

* C is procedural

o Program organization and modularization is
achieved through function design

o Carefully plan your function return type and
parameter list

o Write small functions!

Function Call

void km_to_mile() {

printf ("Enter a mile value: ");

scanf ("$1£f", &mile);

km = mile * 1.6;

printf ("$f mile(s) = %f km\n", mile, km);
}

int main() {

km_to_mile();

1
— km_to_mile (O

return 0;

}

Function Return and Parameters

* The syntax for C functions is the same as Java
methods

* void keyword can be omitted

void km_to_mile (void) {
}

mile_to_km() {

}

int main() {

int choice;

}

Use of return in void Functions

» Exit from the function

void getinput() {
int choice;

while (1)
scanf ("%d", &choice);

switch (choice) {
case 1:
/* some action */
break;
case 0:
return; /* exit from getinput */

The exit Function

* Executing a return statement in main is one way to
terminate a program.

* Another is calling the exit function, which belongs to
<stdlib.h>.

* The statement
return expression;
in main is equivalent to
exit (expression) ;

* To indicate normal termination, we’ d pass 0:

. exit (0); /* normal termination */The
difference between return and exit is that exit causes program
termination regardless of which function calls it.

* The return statement causes program termination only when it
appears in the main function.

Function Prototype

* Aprototypeisa
function declaration
which includes the
return type and a list of
parameters

* A way to move function
definitions aftermain

1 ile2km (doubl

+ Need not name formal ~ 9°u°te miiekn(doubie m

parameters }

/* function prototypes */
double km2mile (double) ;
double mileZkm(double) ;
int main() {

}

/* actual function definitions */
double km2mile (double k)

{

{

2/25/14

Array Arguments

* When a function parameter is a one-dimensional
array, the length of the array can be left unspecified:
int f(int a[]){ /* no length specified */

}
* We can supply the length—if the function needs it—
as an additional argument.

Array Arguments

* Example:

int sum_array(int a[], int n)

{

int i, sum = 0;

for (1 = 0; 1 < n; i++)
sum += al[il;

return sum;

* Since sum_array needs to know the length of a,
we must supply it as a second argument.

Array Arguments

* The prototype for sum array has the following
appearance: B
int sum_array(int a[], int n);

* We can omit the parameter names if we wish:

int sum_array(int [], int);

Array Arguments

* When sum_array is called, the first argument will be the
name of an array, and the second will be its length:

#define LEN 100
int main(void)
int b[LEN], total;
;otal = sum_array (b, LEN);

}

« Notice that we don’ t put brackets after an array name when
passing it to a function:
total = sum_array(b[], LEN); /*** WRONG ***/

Array Arguments

» Suppose that we’ ve only stored 50 numbers in the
b array, even though it can hold 100.

* We can sum just the first 50 elements by writing
total = sum_array (b, 50);

* Be careful not to tell a function that an array
argument is /arger than it really is:
total = sum_array (b, 150); /*** WRONG ***/
sum_array will go past the end of the array,
causglg undefined behavior.

Array Arguments

* A function is allowed to change the elements of an
array parameter, and the change is reflected in the
corresponding argument.

* A function that modifies an array by storing zero
into each of its elements:

void store_zeros(int a[], int n)
int i;
for (i = 0; i < n; i++)
ali] = 0;

Array Arguments

If a parameter is a multidimensional array, only the length
of the first dimension may be omitted.

If we revise sum_array so that a is a two-dimensional
array, we must specify the number of columns in a:
#define LEN 10

int sum_two_dimensional array(int a[] [LEN], int n)
int i, j, sum = 0;
for (i

=0; i < n; i++

for (3 = 0; j < LEN; j++)
sum += a[i][]j];

return sum;

2/25/14

The return Statement

* Anon-void function must use the return
statement to specify what value it will return.

* The return statement has the form
return expression ;

» The expression is often just a constant or variable:

return 0;
return status;

* More complex expressions are possible:

return n >= 0 2 n : 0;

The exit Function

Executing a return statement in main is one
way to terminate a program.

Another is calling the exit function, which
belongs to <stdlib.h>.

The argument passed to exit has the same
meaning as main’s return value: both indicate the
program’s status at termination.

To indicate normal termination, we’ d pass 0:

exit (0); /* normal termination */

The exit Function

* The statement
return expression;
inmain is equivalent to
exit (expression) ;

» The difference between return and exit is that
exit causes program termination regardless of
which function calls it.

* The return statement causes program
termination only when it appears in the main
function.

Local/Global Variables

Variables declared inside a function are local

Function arguments are local to the function passed
to

A global variable is a variable declared outside of
any function.

In a name conflict, the local
variable takes precedence
When local variable shadows
function parameter?

int x = 0;
int £(int x) {
int x = 1;
return x;

int main() {
int x;
x = £(2);

Local Variables

» Since C99 doesn’t require variable declarations to
come at the beginning of a function, it’s possible
for a local variable to have a very small scope:

void f(void)

{

int 1i;
:'» scope of 1
}

Scope of Global Variables

* The scope of a global variable starts at the point of
its definition.

* Globals should be used with caution

o Avoid changing a global inside int x;
a function int £0) {
o Change a global by setting it)
the return value of a function i:: g;() {
o If using globals at all, declare !
them at the top. int main() {
}

2/25/14

Call by Value

» Same as Java, modification to function arguments
during function execution has no effect outside of
function

void f(int x) {
x =x * x;
printf ("%d", x);

The variable x in £ gets
a copy of the value of
the variable x in main.

int main() {
int x = 3;
53 6.9 DG I S Does not change the
printf ("%d", x); Vvalueofxinmain.
return 0;

}

Storage Classes

* auto
o The default — life time is the defining function
o De-allocated once function exits

* static (w.rt. local variables)

o Life time is the entire program — defined and
initialized the first time function is called only

o Scope remains the same

Scope

* Ina C program, the same identifier may have several
different meanings.

* The most important scope rule: When a declaration
inside a block names an identifier that’ s already
visible, the new declaration temporarily “hides” the old
one, and the identifier takes on a new meaning.

» At the end of the block, the identifier regains its old
meaning.

void £() {
static int counter = 0;
counter++;
int(i); /* Declaration 1 */
void f(int(i)) /* Declaration 2 */
i=1;

}

void g(void)

int(i)= 2; /* Declaration 3 */
-3

if (1> 0) {
int (i) ; /* Declaration 4 */

Scope

* In the example on the previous slide, the identifier
1 has four different meanings:

o In Declaration 1, 1 is a variable with static storage
duration and file scope.

o In Declaration 2, 1 is a parameter with block scope.
o In Declaration 3, i is an automatic variable with
block scope.
o In Declaration 4, i is also automatic and has block
scope.
 C’s scope rules allow us to determine the meaning
of i each time it’s used (indicated by arrows).

static: globals and functions

*» Using the keyword static in front of a global or
a function changes the linkage, that is, the scope
across multiple files.

static changes the linkage of an identifier to
internal, which means shared within a single (the
current) file

We will discuss more of linkage and related
keywords, as well as header files when we discuss
multiple source files

2/25/14

Documenting Functions

* A comment for each function
¢ Use descriptive function name, parameter names

#include <stdio.h>
#include <math.h>

/* truncate a value to specific precision */
double truncate(double val, int precision) {
double adj = pow (10, precision);
int tmp;
tmp = (int) (val * adj);
return tmp / adj;

int main() {

Keep main Uncluttered

* Your main function should consist mainly of
function calls

* One main input loop or conditional is okay

* Write your main and choose your function name
in such a way so that
o the main algorithm and program structure is clearly
represented

o the reader can get an idea how your program works
simply by glancing at your main

Recursion

* A function is recursive if it calls itself.

The following function computes n! recursively,
using the formula n! =n x (n—1)!:
int fact (int n)

{
if (n <= 1)

Recursion

* To see how recursion works, let’s trace the
execution of the statement
i = fact(3);

fact (3) finds that 3 is not less than or equal to 1, so it calls
fact (2), which finds that 2 is not less than or equal to 1, so
it calls
fact (1), which finds that 1 is less than or equal to 1, so it
returns 1, causing
fact (2) toreturn 2 x 1 =2, causing
fact (3) toreturn 3 x 2 =6.

return 1;
else
return n * fact(n - 1);
}
Recursion

* The following recursive function computes x”,

using the formula x" = x x x"1.
int power (int x, int n)
{
if (n == 0)
return 1;
else
return x * power(x, n - 1);

Recursion

* We can condense the power function by putting a
conditional expression in the return statement:
int power (int x, int n)

{
returnn==0 7?1 : x * power(x, n - 1);
}

* Both fact and power are careful to test a
“termination condition” as soon as they’ re called.

¢ All recursive functions need some kind of
termination condition in order to prevent infinite
recursion.

2/25/14

The Quicksort Algorithm

* Assume that the array to be sorted is indexed from
1 to n.
Quicksort algorithm

1. Choose an array element e (the “partitioning element”),
then rearrange the array so that elements 1, ..., i — 1 are
less than or equal to e, element i contains e, and elements 7
+1, ..., n are greater than or equal to e.

2. Sort elements 1, ..., i — 1 by using Quicksort recursively.

3. Sort elements i + 1, ..., n by using Quicksort recursively.

The Quicksort Algorithm

» Example of partitioning an array:

~Patitioning ™~

2628 715 |0)]2]6]]7]is] |2 0|36 7 [3s]1s] 22
low l high low l high l low high
26 1] 7 s 0])3 6|7]is]]2 03|67 15|18 | 12

l low, high

g
=
<«
=
S
g
g
<«
Z
S

Program: Quicksort

* The gsort.c program reads 10 numbers into an array,
calls quicksort to sort the array, then prints the
elements in the array:
Enter 10 numbers to be sorted: 9 16 47 82 4 66 12 3 25 51

In sorted order: 3 4 9 12 16 25 47 51 66 82
* The code for partitioning the array is in a separate function
named split.

03 6 a7]as] Jiz [w0]s]s 7 [1s mln 0] 367 1215 m|
low high low high

. .
gsort.c

/* Sorts an array of integers using Quicksort algorithm */
#include <stdio.h>
#define N 10

void quicksort(int a[], int low, int high);
int split(int a[], int low, int high);

int main(void)
int a[N], i;

printf ("Enter %d numbers to be sorted: ", N);
for (i = 0; i < N; i++)

scanf ("%d", &alil);
quicksort(a, 0, N - 1);

printf ("In sorted order: ");

for (i = 0; i < N; i++)
printf("sd ", alil);
printf("\n");
return 0;
}
h\ .

void quicksort (int a[], int low, int high)
{
int middle;

if (low >= high) return;
middle = split(a, low, high);
quicksort(a, low, middle - 1);
quicksort (a, middle + 1, high);

2/25/14

int split(int all, int low, int high)

int part_element = a[low];

for (i) {
while (low < high && part_element <= a[high])
high--;
if (low >= high) break;
a[low++] = alhigh];

while (low < high && a[low] <= part_element)
low++;
if (low >= high) break;
alhigh--] = a[low];
}

alhigh] = part_element;
return high;

Lab — Understanding Recursion

* Given an array of 2n integers in the following format
al a2 a3 ... an bl b2 b3 ... bn. Shuffle the array to
al bl a2b2a3 b3 ... an bn without any extra
memory.

* Assumption: n=2' where i = 0, 1, 2, 3, etc.
* Algorithm (hint: use recursion)?
* Implement your algorithm.

* Print out running traces for each recursive call.

