
2/25/14	

1	

Functions

Based on slides from K. N. King and Dianna Xu

Bryn Mawr College
CS246 Programming Paradigm

Functions
•  Function: Unit of operation

o A series of statements grouped together with a
given name

•  Must have the main function
•  C functions are stand-alone
•  Most programs contain multiple function

definitions
o Must be declared/defined before being used

Identify Repeated Code
int main() {
 int choice;

 printf("=== Expert System ===\n");
 printf("Question1: ...\n");
 printf(
 "1. Yes\n"
 "0. No\n"
 "Enter the number corresponding to your choice: ");
 scanf("%d", &choice);

 if (choice == 1) { /* yes */
 printf("Question 2: ...\n");
 printf(
 "1. Yes\n"
 "0. No\n"
 "Enter the number corresponding to your choice: ");
 scanf("%d", &choice);
 /* skipped */

Identify Repeated Code
int menuChoice() {
 int choice;
 printf(
 "1. Yes\n"
 "0. No\n"
 "Enter the number corresponding to your choice: ");
 scanf("%d", &choice);
 return choice;
}

int main() {
 int choice;

 printf("=== Expert System ===\n");
 printf("Question1: ...\n");
 choice = menuChoice();

 if (choice == 1) { /* yes */
 printf("Question 2: ...\n");
 choice = menuChoice();
 /* skipped */

Identify Similar Code
int main() {
 int choice; double km, mile;
 scanf("%d", &choice);

 switch (choice) {
 case 1:
 printf("Enter a mile value: ");
 scanf("%lf", &mile);
 km = mile * 1.6;
 printf("%f mile(s) = %f km\n", mile, km);
 break;

 caes 2:
 printf("Enter a km value: ");
 scanf("%lf", &km);
 mile = km / 1.6;
 printf("%f km = %f mile(s)\n", km, mile);
 break;

 default:
 printf("\n*** error: invalid choice ***\n");
 }
}

Similar
unit

Similar
unit

Use Parameters to Customize
void km_mile_conv(int choice) {
 int input;
 printf("Enter a %s value: ", choice==1?"mile":"km");
 scanf("%lf", &input);
 if (choice == 1)
 printf("%f mile(s) = %f km(s)\n", input, input*1.6);
 else
 printf("%f km(s) = %f mile(s)\n", input, input/1.6);
}
int main() {
 int choice;
 scanf("%d", &choice);
 switch (choice) {
 case 1:
 km_mile_conv(choice);
 break;
 caea 2:
 km_mile_conv(choice);
 break;
 /* more cases */
 }
}

More readable main

2/25/14	

2	

Function-oriented
•  C came before OO concept
•  C program resemble java programs with a single

giant class
•  C is procedural

o Program organization and modularization is
achieved through function design

o Carefully plan your function return type and
parameter list

o Write small functions!

Function Call
void km_to_mile() {
 printf("Enter a mile value: ");
 scanf("%lf", &mile);
 km = mile * 1.6;
 printf("%f mile(s) = %f km\n", mile, km);
}

int main() {

 km_to_mile();

 km_to_mile();

 return 0;
}

Function Return and Parameters
•  The syntax for C functions is the same as Java

methods
•  void keyword can be omitted

void km_to_mile(void) {

}

mile_to_km() {

}

int main() {
 int choice;
}

Use of return in void Functions

void getinput() {
 int choice;

 while (1) {
 scanf("%d", &choice);

 switch (choice) {
 case 1:
 /* some action */
 break;
 case 0:
 return; /* exit from getinput */
 }
 }
}

•  Exit from the function

The exit Function
•  Executing a return statement in main is one way to

terminate a program.
•  Another is calling the exit function, which belongs to
<stdlib.h>.

•  The statement
 return expression;
 in main is equivalent to
 exit(expression);

•  To indicate normal termination, we’d pass 0:
•  exit(0); /* normal termination */The

difference between return and exit is that exit causes program
termination regardless of which function calls it.

•  The return statement causes program termination only when it
appears in the main function.

Function Prototype
•  A prototype is a

function declaration
which includes the
return type and a list of
parameters

•  A way to move function
definitions after main

•  Need not name formal
parameters

/* function prototypes */
double km2mile(double);
double mile2km(double);
int main() {
}
/* actual function definitions */
double km2mile(double k) {

}
double mile2km(double m) {

}

2/25/14	

3	

Array Arguments
•  When a function parameter is a one-dimensional

array, the length of the array can be left unspecified:
 int f(int a[]){ /* no length specified */
 …
 }

•  We can supply the length—if the function needs it—
as an additional argument.

•  Example:
 int sum_array(int a[], int n)
 {
 int i, sum = 0;

 for (i = 0; i < n; i++)
 sum += a[i];

 return sum;
 }

•  Since sum_array needs to know the length of a,
we must supply it as a second argument.

Array Arguments

•  The prototype for sum_array has the following
appearance:

 int sum_array(int a[], int n);

•  We can omit the parameter names if we wish:
 int sum_array(int [], int);

Array Arguments
•  When sum_array is called, the first argument will be the

name of an array, and the second will be its length:
 #define LEN 100

 int main(void)
 {
 int b[LEN], total;
 …
 total = sum_array(b, LEN);
 …
 }

•  Notice that we don’t put brackets after an array name when
passing it to a function:

 total = sum_array(b[], LEN); /*** WRONG ***/

Array Arguments

•  Suppose that we’ve only stored 50 numbers in the
b array, even though it can hold 100.

•  We can sum just the first 50 elements by writing
 total = sum_array(b, 50);

•  Be careful not to tell a function that an array
argument is larger than it really is:

 total = sum_array(b, 150); /*** WRONG ***/

 sum_array will go past the end of the array,
causing undefined behavior.

Array Arguments
•  A function is allowed to change the elements of an

array parameter, and the change is reflected in the
corresponding argument.

•  A function that modifies an array by storing zero
into each of its elements:

 void store_zeros(int a[], int n)
 {
 int i;

 for (i = 0; i < n; i++)
 a[i] = 0;
 }

Array Arguments

2/25/14	

4	

Array Arguments
•  If a parameter is a multidimensional array, only the length

of the first dimension may be omitted.
•  If we revise sum_array so that a is a two-dimensional

array, we must specify the number of columns in a:
 #define LEN 10

 int sum_two_dimensional_array(int a[][LEN], int n)
 {
 int i, j, sum = 0;

 for (i = 0; i < n; i++)
 for (j = 0; j < LEN; j++)
 sum += a[i][j];

 return sum;
 }

The return Statement
•  A non-void function must use the return

statement to specify what value it will return.
•  The return statement has the form
 return expression ;

•  The expression is often just a constant or variable:
 return 0;
 return status;

•  More complex expressions are possible:
 return n >= 0 ? n : 0;

The exit Function
•  Executing a return statement in main is one

way to terminate a program.
•  Another is calling the exit function, which

belongs to <stdlib.h>.
•  The argument passed to exit has the same

meaning as main’s return value: both indicate the
program’s status at termination.

•  To indicate normal termination, we’d pass 0:
 exit(0); /* normal termination */

The exit Function
•  The statement
 return expression;
 in main is equivalent to
 exit(expression);

•  The difference between return and exit is that
exit causes program termination regardless of
which function calls it.

•  The return statement causes program
termination only when it appears in the main
function.

Local/Global Variables
•  Variables declared inside a function are local
•  Function arguments are local to the function passed

to
•  A global variable is a variable declared outside of

any function.
•  In a name conflict, the local

 variable takes precedence
•  When local variable shadows

 function parameter?

int x = 0;
int f(int x) {
 int x = 1;
 return x;
}

int main() {
 int x;
 x = f(2);
}

Local Variables
•  Since C99 doesn’t require variable declarations to

come at the beginning of a function, it’s possible
for a local variable to have a very small scope:

2/25/14	

5	

Scope of Global Variables
•  The scope of a global variable starts at the point of

its definition.
•  Globals should be used with caution

o Avoid changing a global inside
 a function

o Change a global by setting it
 the return value of a function
o  If using globals at all, declare

 them at the top.

int x;
int f() {
}

int y;
int g(){
}

int main() {

}

Call by Value

void f(int x) {
 x = x * x;
 printf("%d", x);
}

int main() {
 int x = 3;
 f(x);
 printf("%d", x);
 return 0;
}

The variable x in f gets
a copy of the value of
the variable x in main.

Does not change the
value of x in main.

•  Same as Java, modification to function arguments
during function execution has no effect outside of
function

Storage Classes
•  auto

o The default – life time is the defining function
o De-allocated once function exits

•  static (w.r.t. local variables)
o Life time is the entire program – defined and

initialized the first time function is called only
o Scope remains the same

void f() {
 static int counter = 0;
 counter++;
}

Scope
•  In a C program, the same identifier may have several

different meanings.
•  The most important scope rule: When a declaration

inside a block names an identifier that’s already
visible, the new declaration temporarily “hides” the old
one, and the identifier takes on a new meaning.

•  At the end of the block, the identifier regains its old
meaning.

Scope
•  In the example on the previous slide, the identifier
i has four different meanings:
o  In Declaration 1, i is a variable with static storage

duration and file scope.
o  In Declaration 2, i is a parameter with block scope.
o  In Declaration 3, i is an automatic variable with

block scope.
o  In Declaration 4, i is also automatic and has block

scope.
•  C’s scope rules allow us to determine the meaning

of i each time it’s used (indicated by arrows).

2/25/14	

6	

static: globals and functions
•  Using the keyword static in front of a global or

a function changes the linkage, that is, the scope
across multiple files.

•  static changes the linkage of an identifier to
internal, which means shared within a single (the
current) file

•  We will discuss more of linkage and related
keywords, as well as header files when we discuss
multiple source files

Documenting Functions
•  A comment for each function
•  Use descriptive function name, parameter names

#include <stdio.h>
#include <math.h>

/* truncate a value to specific precision */
double truncate(double val, int precision) {
 double adj = pow(10, precision);
 int tmp;

 tmp = (int) (val * adj);
 return tmp / adj;
}

int main() {
}

Keep main Uncluttered
•  Your main function should consist mainly of

function calls
•  One main input loop or conditional is okay
•  Write your main and choose your function name

in such a way so that
o  the main algorithm and program structure is clearly

represented
o  the reader can get an idea how your program works

simply by glancing at your main

Recursion
•  A function is recursive if it calls itself.
•  The following function computes n! recursively,

using the formula n! = n × (n – 1)!:
 int fact(int n)
 {
 if (n <= 1)
 return 1;
 else
 return n * fact(n - 1);
 }

•  To see how recursion works, let’s trace the
execution of the statement

 i = fact(3);

 fact(3) finds that 3 is not less than or equal to 1, so it calls
 fact(2), which finds that 2 is not less than or equal to 1, so

 it calls
 fact(1), which finds that 1 is less than or equal to 1, so it

 returns 1, causing
 fact(2) to return 2 × 1 = 2, causing
 fact(3) to return 3 × 2 = 6.

Recursion Recursion
•  The following recursive function computes xn,

using the formula xn = x × xn–1.
 int power(int x, int n)
 {
 if (n == 0)
 return 1;
 else
 return x * power(x, n - 1);
 }

2/25/14	

7	

Recursion
•  We can condense the power function by putting a

conditional expression in the return statement:
 int power(int x, int n)
 {
 return n == 0 ? 1 : x * power(x, n - 1);
 }

•  Both fact and power are careful to test a
“termination condition” as soon as they’re called.

•  All recursive functions need some kind of
termination condition in order to prevent infinite
recursion.

•  Assume that the array to be sorted is indexed from
1 to n.

 Quicksort algorithm
1. Choose an array element e (the “partitioning element”),

then rearrange the array so that elements 1, …, i – 1 are
less than or equal to e, element i contains e, and elements i
+ 1, …, n are greater than or equal to e.

2. Sort elements 1, …, i – 1 by using Quicksort recursively.
3. Sort elements i + 1, …, n by using Quicksort recursively.

The Quicksort Algorithm

The Quicksort Algorithm
•  Example of partitioning an array:

Patitioning
element

Program: Quicksort
•  The qsort.c program reads 10 numbers into an array,

calls quicksort to sort the array, then prints the
elements in the array:

 Enter 10 numbers to be sorted: 9 16 47 82 4 66 12 3 25 51
 In sorted order: 3 4 9 12 16 25 47 51 66 82

•  The code for partitioning the array is in a separate function
named split.

qsort.c

/* Sorts an array of integers using Quicksort algorithm */

#include <stdio.h>
#define N 10
void quicksort(int a[], int low, int high);
int split(int a[], int low, int high);

int main(void)
{
 int a[N], i;

 printf("Enter %d numbers to be sorted: ", N);
 for (i = 0; i < N; i++)
 scanf("%d", &a[i]);
 quicksort(a, 0, N - 1);
 printf("In sorted order: ");
 for (i = 0; i < N; i++)
 printf("%d ", a[i]);
 printf("\n");

 return 0;
}

void quicksort(int a[], int low, int high)
{
 int middle;

 if (low >= high) return;
 middle = split(a, low, high);
 quicksort(a, low, middle - 1);
 quicksort(a, middle + 1, high);
}

2/25/14	

8	

int split(int a[], int low, int high)
{
 int part_element = a[low];

 for (;;) {
 while (low < high && part_element <= a[high])
 high--;
 if (low >= high) break;
 a[low++] = a[high];

 while (low < high && a[low] <= part_element)
 low++;
 if (low >= high) break;
 a[high--] = a[low];
 }

 a[high] = part_element;
 return high;
}

Lab – Understanding Recursion
•  Given an array of 2n integers in the following format

a1 a2 a3 … an b1 b2 b3 … bn. Shuffle the array to
a1 b1 a2 b2 a3 b3 … an bn without any extra
memory.

•  Assumption: n=2i where i = 0, 1, 2, 3, etc.
•  Algorithm (hint: use recursion)?
•  Implement your algorithm.
•  Print out running traces for each recursive call.

