
2/25/14	

1	

The Preprocessor

Based on slides from K. N. King and Dianna Xu

Bryn Mawr College
CS246 Programming Paradigm

Header Files
•  Contains a collection of function prototypes,

constant and preprocessor definitions
•  Named with extension .h
•  By convention carries the same name as the

associated .c file
o  hw1.h à hw1.c

•  Included in the source file with #include
o  #include <stdio.h>
o  #include "hw1.h"

•  A way to use functions defined in other source files

The Preprocessor
•  Directives such as #define and #include are

handled by the preprocessor, a piece of software
that edits C programs just prior to compilation.

The Preprocessor
•  Preprocessor directives begin with a #

o File inclusion
•  #include – includes a named file

o Macro definition
•  #define – defines a (text replacement) macro

o Conditional compilation
•  #ifdef/#else/#endif – conditional

compilation #ifdef MACRONAME
 part 1
#else
 part 2
#endif

Preprocessor Directives
•  Several rules apply to all directives.
•  Directives always begin with the # symbol
•  Directives can appear anywhere in a program.
•  Any number of spaces and horizontal tab characters may

separate the tokens in a directive. Example:
 # define N 100

•  Directives always end at the first new-line character,
unless explicitly continued.
 To continue a directive to the next line, end the current line with a \
character:

 #define DISK_CAPACITY (SIDES * \
 TRACKS_PER_SIDE * \
 SECTORS_PER_TRACK * \
 BYTES_PER_SECTOR)

#define
•  Often used to define constants

o #define TRUE 1
o #define FALSE 0
o #define PI 3.14159
o #define SIZE 20

•  Offers easy one-touch change of scale/size
•  #define vs constants

o The preprocessor directive uses no memory
o #define may not be local

2/25/14	

2	

#define - more readable
#include<stdio.h>
#define MILE 1
#define KM 2

void km_mile_conv(int choice) {
 // …
 if (choice == MILE)
 // …
}
int main() {
 // …
 switch (choice) {
 case MILE:
 km_mile_conv(choice);
 break;
 caea KM:
 km_mile_conv(choice);
 break;
 /* more cases */
 }
}

Parameterized Macros
•  Examples of parameterized macros:
 #define MAX(x,y) ((x)>(y)?(x):(y))
 #define IS_EVEN(n) ((n)%2==0)

•  Invocations of these macros:
 i = MAX(j+k, m-n);
 if (IS_EVEN(i)) i++;

•  The same lines after macro replacement:
 i = ((j+k)>(m-n)?(j+k):(m-n));
 if (((i)%2==0)) i++;

•  A more complicated function-like macro:
 #define TOUPPER(c) \
 ('a'<=(c)&&(c)<='z'?(c)-'a'+'A':(c))

Parameterized Macros
•  A macro may evaluate its arguments more than once.

 Unexpected behavior may occur if an argument has
side effects:

 n = MAX(i++, j);

 The same line after preprocessing:
 n = ((i++)>(j)?(i++):(j));

•  Errors caused by evaluating a macro argument more
than once can be difficult to find, because a macro
invocation looks the same as a function call.

•  For self-protection, it’s a good idea to avoid side
effects in arguments.

The # Operator
•  The # operator converts a macro argument into a

string literal; it can appear only in the replacement list
of a parameterized macro.

•  For example:
 #define PRINT_INT(n) printf(#n " = %d\n", n)

•  The invocation
 PRINT_INT(i/j);
 will become
 printf("i/j" " = %d\n", i/j);

•  The compiler automatically joins adjacent string
literals, so this statement is equivalent to

 printf("i/j = %d\n", i/j);

The ## Operator
•  The ## operator can “paste” two tokens together to form a

single token.
•  If one of the operands is a macro parameter, pasting occurs

after the parameter has been replaced by the corresponding
argument.

•  A macro that uses the ## operator:
 #define MK_ID(n) i##n

•  A declaration that invokes MK_ID three times:
 int MK_ID(1), MK_ID(2), MK_ID(3);

•  The declaration after preprocessing:
 int i1, i2, i3;

General Properties of Macros
•  Macros may be “undefined” by the #undef

directive.
 The #undef directive has the form
 #undef identifier
 where identifier is a macro name.
 One use of #undef is to remove the existing
definition of a macro so that it can be given a new
definition.

2/25/14	

3	

Parentheses in Macro Definitions
•  The replacement lists in macro definitions often require

parentheses in order to avoid unexpected results.
•  Each occurrence of a parameter in a macro’s replacement

list needs parentheses as well:
 #define SCALE(x) (x*10)
 /* needs parentheses around x */

•  During preprocessing, the statement
 j = SCALE(i+1);

 becomes
 j = (i+1*10);

 This statement is equivalent to
 j = i+10;

Conditional Compiling
•  Debugging (so that you don’t have to remove all

your printf debugging!)

#ifdef DEBUG
 // lots and lots of printfs
#else
 // nothing often omitted
#endif

•  Portability

#ifdef WINDOWS
// code that only works on windows
#endif

Defining a Macro for #ifdef
•  #define DEBUG
•  #define DEBUG 0
•  #define DEBUG 1
•  The –Dmacro[=def] flag of gcc

o gcc –DDEBUG hw1.c –o hw1
o gcc –DDEBUG=1 hw1.c –o hw1
o gcc –DDEBUG=0 hw1.c –o hw1

#ifndef, #if, #elif, #else
•  #ifndef is the opposite of #ifdef
•  #if DEBUG

o  Test to see if DEBUG is non-zero
o  If using #if, must use #define DEBUG 1
o Undefined macros are considered to be 0.

•  #elif MACRONAME
#if WINDOWS
 //included if WINDOWS is non-zero
#elif LINUX
 //included if WINDOWS is 0 but LINUX is non-zero
#else
 //if both are 0
#endif

Predefined Macros
•  Useful macros that primarily provide information

about the current compilation
o __LINE__ Line number of file compiled
o __FILE__ Name of file being compiled
o __DATE__ Date of compilation
o __TIME__ Time of compilation

•  printf("Comipiled on %s at %s.\n",
__DATE__, __TIME__);

#error

•  #error message
o  prints message to screen
o  often used in conjunction with #ifdef, #else
#if WINDOWS
//…
#elif LINUX
//…
#else
#error OS not specified

#endif

2/25/14	

4	

Program Organization
•  #include and #define first
•  Globals if any
•  Function prototypes, unless included with header

file already
•  int main()– putting your main before all other

functions makes it easier to read
•  The rest of your function definitions

Math Library Functions
•  Requires an additional header file

#include <math.h>

•  Must compile with additional flag -lm
•  Prototypes in math.h

o  double sqrt(double x);
o  double pow(double x, double p);
o  double log(double x);
o  double sin(double x)
o  double cos(double x)

xp

(natural log, base e)

Summary
•  Learn to use prototypes and header files

•  Preprocessor directives are very useful

•  Always use #define directives for array sizes!

