
2/25/14	

1	

Pointers

Based on slides from K. N. King and Dianna Xu

Bryn Mawr College
CS246 Programming Paradigm

Variable and Address
•  Variable = Storage in computer

memory
o Contains some value
o Must reside at a specific location

called address
o Basic unit – byte
o  Imagine memory as a one-

dimensional array with addresses as
byte indices

o A variable consists of one or more
bytes, depending on its type (size)

Memory
70
31
4
6
30
1
10
4
6
95

201
12

0
1
2
3
4
5
6
7
8
9

30
31

address value

char

int

Pointer – Reference
•  A pointer (pointer variable) is a variable that stores

an address (like Java reference)
o value – address of some memory
o  type – size of that memory

•  Recall in Java, when one declares variables of a
class type, these are automatically references.

•  In C, pointers have special syntax and much greater
flexibility.

Address Operations in C
•  Declaration of pointer variables

o The pointer declarator ‘*’
•  Use of pointers

o The address of operator ‘&’
o The indirection operator ‘*’ – also known as de-

referencing a pointer

Pointer Declaration
•  Syntax

o destinationType * varName;
•  Must be declared with its associated type.
•  Examples

o int *ptr1;
 A pointer to an int variable

o char *ptr2;
 A pointer to a char variable

ptr1

ptr2

will contain addresses

Pointers are NOT integers
•  Although memory addresses are essentially very

large integers, pointers and integers are not
interchangeable.

•  Pointers are not of the same type
•  A pointer’s type depends on what it points to

o int *p1; // sizeof(*p1)=sizeof(int)
o char *p2; //sizeof(*p2)=sizeof(char)

•  C allows free conversion btw different pointer types
via casting (dangerous)

2/25/14	

2	

Address of Operator
•  Syntax

o & expression
 The expression must have an address. E.g., a
constant such as “1” does not have an address.

•  Example
o int x = 1;
 f(&x);
 The address of x (i.e. where x is stored in
memory), say, the memory location 567, (not 1) is
passed to f.

x 1
address = 567

Pointer Assignment
•  A pointer p points to x if x’s address is stored in p
•  Example

o int x = 1;
 int *p;
 p = &x;

 Interpreted as: p 567

x 1
address = 567

p x 1

Pointer Diagram

0012FF88 8

ip i (@0012FF88)

int i = 8;
int *ip;

ip = &i;

Pointer Assignment
•  A pointer p points to x if x’s address is stored in p
•  Example

o int x = 1;
 int *p, *q;
 p = &x;
 q = p;
 Interpreted as: p 567

x 1
address = 567

p x 1

q 567

q

Pointer Assignment
•  Example

o int x=1, y=2, *p, *q;
 p = &x; q = &y;
 q = p;

p 567

y 2
address = 988

q 988

x 1
address = 567

567

Indirection Operator
•  Syntax

o * pointerVar
o Allows access to value of memory being pointed to
o Also called dereferencing

•  Example
o int x = 1, *p;
 p = &x;
 printf("%d\n", *p);
 *p refers to x; thus prints 1

p x 1

Note: ‘*’ in a declaration and ‘*’ in an
expression are different.
int *p; int * p; int* p;

2/25/14	

3	

Assignment Using Indirection Operator

•  Allows access to a variable indirectly through a
pointer pointed to it.

•  Pointers and integers are not interchangeable
•  Example

o int x = 1, *p;
 p = &x;
 *p = 2;
 printf("%d\n", x);
o *p is equivalent to x

p x 1

p x 2

Schematically

int x = 1;

int *p;

p = &x;

printf("%d", *p);

*p = 2;

printf("%d", x);

x 1

p

prints 1

x 1

p

prints 2

x 2

p

Notes

•  Pointer and integers are not exchangeable
•  Levels of addressing (i.e. layers of pointers) can

be arbitrarily deep
•  Remember the & that you MUST put in front of
scanf variables?

•  Failing to pass a pointer where one is expected or
vise versa always leads to segmentation faults.

