
3/4/14	

1	

Pointers and Arrays

Based on slides from K. N. King and Dianna Xu

Bryn Mawr College
CS246 Programming Paradigm

The NULL Pointer
•  C guarantees that zero is never a valid address for

data
•  A pointer that contains the address zero known as

the NULL pointer
•  It is often used as a signal for abnormal or terminal

event
•  It is also used as an initialization value for pointers

Pass by Value
•  All functions are pass-by-value in C

o A copy is made of each parameter’s value and then
the copy is passed

•  Variables supplied as parameters to a function call
are protected against change
o  i.e. impossible to write a swap(x, y) function

•  Only way to modify a variable through a function
is to assign the return value to that variable

Pass by Value and Pointers
•  All functions are pass-by-value in C
•  Pass-by-value still holds even if the parameter is a

pointer
o A copy of the pointer’s value is made – the address

stored in the pointer variable
o The copy is then a pointer pointing to the same

object as the original parameter
o Thus modifications via de-referencing the copy

STAYS.

Function Arguments
•  x and y are copies of the original, and thus a and b

can not be altered.

 void swap(int x, int y) {
 int tmp;
 tmp = x; x = y; y = tmp;
}

int main() {
 int a = 1, b = 2;

 swap(a, b);
 return 0;
}

Wrong!

Pointers as Function Arguments
•  Passing pointers – a and b are passed by reference

(the pointers themselves px and py are still passed
by value)

void swap(int *px, int *py) {
 int tmp;
 tmp = *px; *px = *py; *py = tmp;
}

int main() {
 int a = 1, b = 2;

 swap(&a, &b);
 return 0;
}

px

a 1

py

b 2

3/4/14	

2	

Pointers as Function Arguments

•  Write a function that will decompose a double

value into an integer part and a fractional part.
•  As a result of the call, int_part points to i and
frac_part points to d:

Pointers as Function Arguments

void decompose(double d, int *i, double *frac) {
 *i = (int) d;
 *frac = d - *i;
}

int main() {
 int int_part;
 double frac_part, input;

 scanf("%lf", &input);
 decompose(input, &int_part, &frac_part);
 printf("%f decomposes to %d and %f\n",
 *int_part, *frac_part);
 return 0;
}

Pass by Reference
•  The pointer variables themselves are still passed by

value
•  In a function, if a pointer argument is de-

referenced, then the modification indirectly
through the pointer will stay

Pointers are Passed by Value
void f(int *px, int *py) {
 px = py;
}

int main() {
 int x = 1, y = 2, *px;
 px = &x;
 f(px, &y);
 printf("%d", *px);
}

Modification of a Pointer
void g(int **ppx, int *py) {
 *ppx = py;
}

int main() {
 int x = 1, y = 2, *px;
 px = &x;
 g(&px, &y);
 printf("%d", *px);
}

Pointer as Return Value
•  We can also write functions that return a pointer
•  Thus, the function is returning the memory address

of where the value is stored instead of the value
itself

•  Be very careful not to return an address to a
temporary variable in a function!!!

3/4/14	

3	

Example
•  x and y are copies of the original, and thus what is
&x and &y?

int* max(int *x, int *y) {
 if (*x > *y)
 return x;
 return y;
}

int main() {
 int a = 1, b = 2, *p;

 p = max(&a, &b);
 return 0;
}

int* max(int x, int y) {
 if (x > y)
 return &x;
 return &y;
}

p = max(a, b);

Arrays

•  Schematic representation

element

0 1 2 k-2 k-1 index

•  Declaration – int a[5];

•  Assignment – a[0] = 1;

•  Reference – y = a[0];

a ? ? ? ? ?

a
0 4

? ? ? ? 1

Pointers and Arrays
•  Arrays are contiguous

allocations of memory of the
size:
sizeof(elementType)
* numberOfElements

•  Given the address of the first
byte, using the type (size) of
the elements one can
calculate addresses to access
other elements

Memory
70
31
4
6
30
1
10
4
6
31

45
12

0
1
2
3
4
5
6
7
8
9

30
31

address value

array

1
pointer

Name of an Array
•  The variable name of an array is also a pointer to

its first element.

•  a == &a[0]
•  a[0] == *a

a:
a[0] a[1] a[8]

a a+1 a+8

•  One can add/subtract an integer to/from a pointer
•  The pointer advances/retreats by that number of

elements (of the type being pointed to)
o  a+i == &a[i]
o  a[i] == *(a+i)

•  Subtracting two pointers yields the number of
elements between them

Pointer Arithmetic Adding an Integer to a Pointer
•  Example of pointer addition:
 p = &a[2];

 q = p + 3;

 p += 6;

If p points to the array element a[i], then p + j

points to a[i+j].

3/4/14	

4	

Subtracting an Integer from a Pointer
•  If p points to a[i], then p - j points to a[i-j].
•  Example:
 p = &a[8];

 q = p - 3;

 p -= 6;

Subtracting One Pointer from Another
•  When one pointer is subtracted from another, the result is

the distance (measured in array elements) between the
pointers.

•  If p points to a[i] and q points to a[j], then p - q is
equal to i - j.

•  Example:
 p = &a[5];
 q = &a[1];

 i = p - q; /* i is 4 */
 i = q - p; /* i is -4 */

Using Pointers for Array Processing
•  Pointer arithmetic allows us to visit the elements of

an array by repeatedly incrementing a pointer
variable.

•  A loop that sums the elements of an array a:
 #define N 10
 …
 int a[N], sum, *p;
 …
 sum = 0;
 for (p = &a[0]; p < &a[N]; p++)
 sum += *p;

•  &a[N] is legal since the loop doesn’t attempt to
examine its value.

Combining * and ++/--
•  ++ and -- has precedence over *

o a[i++] = j;
o p=a; *p++ = j; <==> *(p++) = j;

o *p++; value: *p, inc: p
o (*p)++; value: *p, inc: *p
o ++(*p); value: (*p)+1, inc: *p
o *++p; value: *(p+1), inc: p

Combining * and ++/--
•  The most common combination of * and ++ is *p
++, which is handy in loops.

•  Instead of writing
 for (p = &a[0]; p < &a[N]; p++)
 sum += *p;

 to sum the elements of the array a, we could write
 p = &a[0];
 while (p < &a[N])
 sum += *p++;

Using an Array Name as a Pointer
•  The name of an array can be used as a pointer to the

first element in the array.
•  Suppose that a is declared as follows:
 int a[10];

•  Examples of using a as a pointer:
 a = 7; / stores 7 in a[0] */
 (a+1) = 12; / stores 12 in a[1] */

•  In general, a + i is the same as &a[i].
o Both represent a pointer to element i of a.

•  Also, *(a+i) is equivalent to a[i].
o Both represent element i itself.

3/4/14	

5	

Using an Array Name as a Pointer
•  The fact that an array name can serve as a pointer

makes it easier to write loops that step through an
array.

•  Original loop:
 for (p = &a[0]; p < &a[N]; p++)
 sum += *p;

•  Simplified version:
 for (p = a; p < a + N; p++)
 sum += *p;

Using an Array Name as a Pointer
•  Although an array name can be used as a pointer,

it’s not possible to assign it a new value.
•  Attempting to make it point elsewhere is an error:
 while (*a != 0)
 a++; /*** WRONG ***/

•  This is no great loss; we can always copy a into a
pointer variable, then change the pointer variable:

 p = a;
 while (*p != 0)
 p++;

#define SIZE 10

void init(int a[]) {
 int i;

 for(i = 0;i<SIZE;i++){
 a[i] = 0;
 }
}

int main() {
 int a[SIZE];

 init(a);
 return 0;
}

Arrays as Arguments

/* equivalent pointer alternative */
void init(int *a) {
 int i;

 for(i = 0;i<SIZE;i++){
 *(a+i) = 0;
 }
}

•  Arrays are passed
by reference

•  Modifications stay

Arrays as Arguments
•  When passed to a function, an array name is treated as a pointer.
•  Example:
 int find_largest(int a[], int n)
 {
 int i, max;

 max = a[0];
 for (i = 1; i < n; i++)
 if (a[i] > max)
 max = a[i];
 return max;
 }

•  A call of find_largest:
 largest = find_largest(b, N);

 This call causes a pointer to the first element of b to be assigned
to a; the array itself is NOT copied.

Consequence of Array Arguments
•  Consequence 1: When an ordinary variable is

passed to a function, its value is copied; any
changes to the corresponding parameter don’t
affect the variable. An array used as an argument
is NOT protected against change.

 void store_zeros(int a[], int n)
 {
 int i;

 for (i = 0; i < n; i++)
 a[i] = 0;
 }

Consequence of Array Arguments
•  To indicate that an array parameter won’t be

changed, we can include the word const in its
declaration:

 int find_largest(const int a[], int n)
 {
 …
 }

•  If const is present, the compiler will check that
no assignment to an element of a appears in the
body of find_largest.

3/4/14	

6	

Consequence of Array Arguments
•  Consequence 2: The time required to pass an array

to a function does not depend on the size of the
array.

•  Consequence 3: An array parameter can be
declared as a pointer if desired.

•  find_largest could be defined as follows:
 int find_largest(int *a, int n)
 {
 …
 }

Consequence of Array Arguments
•  Declaring a parameter to be an array is the same

as declaring it to be a pointer.
•  However, it is NOT same for a variable.
 int a[10];

 The compiler to set aside space for 10 integers
 int *a;

 The compiler to allocate space for a pointer variable.
a is not an array; attempting to use it as an array can have
disastrous results.

Consequence of Array Arguments
•  Consequence 4: A function with an array

parameter can be passed an array “slice”—a
sequence of consecutive elements.

•  An example that applies find_largest to
elements 5 through 14 of an array b:

 largest = find_largest(&b[5], 10);

Using a Pointer as an Array Name
•  C allows us to subscript a pointer as though it

were an array name:
 #define N 10
 …
 int a[N], i, sum = 0, *p = a;
 …
 for (i = 0; i < N; i++)
 sum += p[i];

 The compiler treats p[i] as *(p+i).

Multi-Dimensional Array

0 1 2 k-2 k-1

0

1

2

second
dimension

first dim
ension

int a[2][3];

a[0][1] = 5;
y = a[0][1];

a ? ? ?
? ? ?

a

0 2
5 ? ?
? ? ?

0
1

1

Multi-Dimensional Array
•  Layout of an array with r rows:

•  If p initially points to the element in row 0, column 0,
we can visit every element in the array by
incrementing p repeatedly.

3/4/14	

7	

Processing the Elements
of a Multi-Dimensional Array

int a[NUM_ROWS][NUM_COLS];

•  Use nested for loops:
 int row, col;
 …
 for (row = 0; row < NUM_ROWS; row++)
 for (col = 0; col < NUM_COLS; col++)
 a[row][col] = 0;

•  If we view a as a one-dimensional array of
integers, a single loop is sufficient:

 int *p;
 …
 for (p = &a[0][0];
 p <= &a[NUM_ROWS-1][NUM_COLS-1]; p++)

 *p = 0;

Processing the Rows
of a Multi-Dimensional Array

•  To visit the elements of row i, we’d initialize p to point to
element 0 in row i in the array a:

 p = &a[i][0];

 or we could simply write
 p = a[i]; //a pointer to the first element in row i

•  Recall that a[i] is equivalent to *(a + i)
•  Thus, &a[i][0] is the same as &(*(a[i] + 0)),

which is equivalent to &*a[i].
•  This is the same as a[i]

Processing the Rows
of a Multi-Dimensional Array

•  A loop that clears row i of the array a:
 int a[NUM_ROWS][NUM_COLS], *p, i;
 …
 for (p = a[i]; p < a[i] + NUM_COLS; p++)
 *p = 0;

•  Use find_largest to determine the largest element in
row i of the two-dimensional array a:

 largest = find_largest(a[i], NUM_COLS);

Processing the Columns
of a Multi-Dimensional Array

•  A loop that clears column i of the array a:
 int a[NUM_ROWS][NUM_COLS], (*p)
[NUM_COLS], i;

 …
 for (p = &a[0]; p < &a[NUM_ROWS]; p++)
 (*p)[i] = 0;

Using the Name of
a Multidimensional Array as a Pointer
•  The name of any array can be used as a pointer, regardless of

how many dimensions it has, but some care is required.
•  Example:
 int a[NUM_ROWS][NUM_COLS];

 a is not a pointer to a[0][0];
instead, it’s a pointer to a[0].

•  C regards a as a one-dimensional array whose elements are
one-dimensional arrays.

•  When used as a pointer, a has type int (*)[NUM_COLS]
 (pointer to an integer array of length NUM_COLS).

Using the Name of
a Multidimensional Array as a Pointer
•  Since a points to a[0], we can simplify loops that process

the elements of a two-dimensional array.
•  To clear column i of the array a:

for (p = &a[0]; p < &a[NUM_ROWS]; p++)
 (*p)[i] = 0;

•  Now we can write
 for (p = a; p < a + NUM_ROWS; p++)
 (*p)[i] = 0;

3/4/14	

8	

Using the Name of
a Multidimensional Array as a Pointer
•  We can “trick” a function into thinking that a multidimensional

array is really one-dimensional.
•  A first attempt at using using find_largest to find the largest

element in a:
 largest = find_largest(a, NUM_ROWS * NUM_COLS);
 /* WRONG */

•  This an error, because the type of a is int (*)[NUM_COLS] but
find_largest is expecting an argument of type int *.

•  The correct call:
 largest = find_largest(a[0], NUM_ROWS * NUM_COLS);

 a[0] points to element 0 in row 0, and it has type int * (after
conversion by the compiler).

Summary

•  Understand the relationship between arrays and
pointers

•  Understand the relationship between two-
dimensional arrays and pointer arrays

•  Arrays are passed by reference to functions
•  Pointer arithmetic is powerful but dangerous!

Exercise
•  Suppose that the following declarations are in effect:

int a[]={5, 15, 34, 54, 14, 2, 52, 72};
int *p = &a[1], *q=&a[5];

•  (a) what is the value of *(p+3)?
(b) what is the value of *(q-3)?
(c) what is the value of q-p?
(d) Is p<q true or false?
(e) Is *p<*q true or false?

Exercise
•  What will be the contents of the array after the

following statements are executed?
•  #define N 10

int a[N]={1,2,3,4,5,6,7,8,9,10};
int *p=&a[0], *q=&a[N-1], temp;
while(p<q){
 temp = *p;
 *p++ = *q;
 *q-- = temp;
}

