
3/4/14	

1	

Strings

Based on slides from K. N. King and Dianna Xu

Bryn Mawr College
CS246 Programming Paradigm

String Literals
•  A string literal is a sequence of characters enclosed within double

quotes:
 "When you come to a fork in the road, take it."

•  String literals may contain escape sequences.
•  Character escapes often appear in printf and scanf format

strings.
•  For example, each \n character in the string
 "Candy\nIs dandy\nBut liquor\nIs quicker.\n --Ogden Nash\n"

 causes the cursor to advance to the next line:
 Candy
 Is dandy
 But liquor
 Is quicker.
 --Ogden Nash

Continuing a String Literal
•  The backslash character (\)

printf("When you come to a fork in the road, take it. \
 --Yogi Berra");

o  In general, the \ character can be used to join two or
more lines of a program into a single line.

•  When two or more string literals are adjacent, the
compiler will join them into a single string.

 printf("When you come to a fork in the road, take it. "
 "--Yogi Berra");
This rule allows us to split a string literal over two or more
lines

How String Literals Are Stored
•  The string literal "abc" is stored as an array of

four characters:

•  The string "" is stored as a single null character:

Null
character

How String Literals Are Stored
•  Since a string literal is stored as an array, the

compiler treats it as a pointer of type char *.
•  Both printf and scanf expect a value of type
char * as their first argument.

•  The following call of printf passes the address
of "abc" (a pointer to where the letter a is stored
in memory):

 printf("abc");

Operations on String Literals
•  We can use a string literal wherever C allows a
char * pointer:

 char *p;

 p = "abc";

•  This assignment makes p point to the first
character of the string.

3/4/14	

2	

Operations on String Literals
•  String literals can be subscripted:
 char ch;

 ch = "abc"[1]; //ch is ‘b’

•  A function that converts a number between 0 and
15 into the equivalent hex digit:

 char digit_to_hex_char(int digit)
 {
 return "0123456789ABCDEF"[digit];
 }

Operations on String Literals
•  Attempting to modify a string literal causes

undefined behavior:
 char *p = "abc";

 *p = 'd'; /*** WRONG ***/

•  A program that tries to change a string literal may
crash or behave erratically.

String Literals vs
Character Constants

•  A string literal containing a single character is not
the same as a character constant.
o "a" - represented by a pointer.
o 'a’ - represented by an integer.

•  A legal call of printf:
 printf("\n");

•  An illegal call:
 printf('\n'); /*** WRONG ***/

String Variables
•  Any one-dimensional array of characters can be

used to store a string.
•  A string must be terminated by a null character.
 #define STR_LEN 80
 …
 char str[STR_LEN+1];
o Defining a macro that represents 80 and then adding

1 separately is a common practice.

Initializing a String Variable
•  A string variable can be initialized at the same time

it’s declared:
 char date1[8] = "June 14";
 char date4[] = "June 14";

char date2[9] = "June 14";

Not a string literal.
An abbreviation for
an array initializer

Character Arrays vs
Character Pointers

•  The declaration
 char date[] = "June 14";

 declares date to be an array,
•  The similar-looking
 char *date = "June 14";

 declares date to be a pointer.
•  Thanks to the close relationship between arrays and

pointers, either version can be used as a string.

Pointer variable

Array name

String literal – should not be modified.

Characters can be modified

3/4/14	

3	

Character Arrays vs
Character Pointers

•  char *p; //does not allocate space for a string.
•  Using an uninitialized pointer variable as a string is a

serious error.
An attempt at building the string "abc":

 char *p;

 p[0] = 'a'; /*** WRONG ***/
 p[1] = 'b'; /*** WRONG ***/
 p[2] = 'c'; /*** WRONG ***/
 p[3] = '\0'; /*** WRONG ***/

•  Before we can use p as a string, it must point to an
array of characters.

 char str[STR_LEN+1], *p;
 p = str;

Reading and Writing Strings
•  Writing a string

o  printf
o  puts

•  Reading a string
o  in a single step

•  scanf
•  gets

o  read strings one character at a time.
•  Reading a string is a bit harder, because the input may

be longer than the string variable into which it’s being
stored.

printf and puts
•  The %s conversion specification allows printf

to write a string:
 char str[] = "Are we having fun yet?";

 printf("%s\n", str);

 The output will be
 Are we having fun yet?

•  printf writes the characters in a string one by
one until it encounters a null character.

printf and puts
•  A conversion specification: %m.ps

o  the first p characters of a string to be displayed in a field
of size m.

•  To print part of a string, use the conversion
specification %.ps.

•  printf("%.6s\n", str); //Are we
•  The %ms conversion will display a string in a field of

size m.
o  If the string has fewer than m characters, it will be right-

justified within the field.
o  To force left justification instead, we can put a minus

sign in front of m.

printf and Strings
int main() {
 char s[] = "01234";
 char *p;
 p = s;

 printf("%c\n", s[0]);
 printf("%c\n", *s);
 printf("%c\n", *(p+1));

 printf("%s\n", s);
 printf("%s\n", p+1);
}

•  %d, %c, %f:
Displays the given
value

•  %s: Displays
characters from
the specified
address until
'\0'

Displaying Substrings
int main() {
 char s[] = "01234";
 char *p;
 p = s;

 printf("%s\n", s);
 printf("%s\n", p);

 printf("%s\n", s + 0);
 printf("%s\n", &(s[0]));

 printf("%s\n", s + 2);
 printf("%s\n", &(s[2]));
}

3/4/14	

4	

Displaying Characters of a String

int main() {
 char s[] = "01234";
 char *p;
 p = s;

 printf("%c\n", s[0]);
 printf("%c\n", *p);
 printf("%c\n", *(p + 0));

 printf("%c\n", s[2]);
 printf("%c\n", *(p + 2));
}

printf and puts
 puts(str);

•  After writing a string, puts always writes an
additional new-line character.

#define BUFLEN 200

int main() {
 char buf[BUFLEN];

 gets(buf);
 puts(buf);
 return 0;
}

puts adds '\n' to output,
equivalent to
printf("%s\n", buf);

scanf and gets
•  The %s conversion specification allows scanf to

read a string into a character array:
 scanf("%s", str);

•  When scanf is called,
o  it skips white space,
o  reads characters and stores them in str until it

encounters a white-space character.
•  scanf always stores a null character at the end of

the string.

str is treated as a pointer
no & in front of str

scanf and gets
•  gets: read an entire line of input
•  Properties of gets:

o Does not skip white space before starting to read
input.

o Reads until it finds a new-line character.
o Discards the new-line character instead of storing it;

the null character takes its place.

scanf and gets
•  Consider the following program fragment:
 char sentence[SENT_LEN+1];

 printf("Enter a sentence:\n");
 scanf("%s", sentence);

•  Suppose that the user enters the line
 To C, or not to C: that is the question.

•  scanf will store the string "To" in sentence.
•  gets will store the string
 " To C, or not to C: that is the

question."
 in sentence.

scanf and gets
•  As they read characters into an array, scanf and
gets have no way to detect when it’s full.

•  Consequently, they may store characters past the
end of the array, causing undefined behavior.

•  scanf:use the conversion specification %ns
instead of %s.

•  gets is inherently unsafe; fgets is a much better
alternative.

3/4/14	

5	

Accessing the Characters
in a String

•  A function that counts the number of spaces in a
string:

 int count_spaces(const char s[])
 {
 int count = 0, i;

 for (i = 0; s[i] != '\0'; i++)
 if (s[i] == ' ')
 count++;
 return count;
 }

•  A version that uses pointer arithmetic instead of
array subscripting :

 int count_spaces(const char *s)
 {
 int count = 0;

 for (; *s != '\0'; s++)
 if (*s == ' ')
 count++;
 return count;
 }

Accessing the Characters
in a String

