3/20/14

Structures, Unions, and
Enumerations

Based on slides from K. N. King and Dianna Xu

Bryn Mawr College
(CS246 Programming Paradigm

Structure

Structures group multiple (heterogeneous)
variables

o The elements of a structure (its members) aren’ t
required to have the same type.

o The members of a structure have names; to select a
particular member, we specify its name, not its
position.

In some languages, structures are called records,
and members are known as fields.

Structure Operations

Structure type declaration
Structure variable declaration
Member assignment/reference
Structure initialization
Structure assignment

Structure Type (Structure Tag)

Suppose that a program needs to declare several
structure variables with identical members.
A structure tag is a name used to identify a
particular kind of structure.
The declaration of a structure tag named part:
struct part—t=—— gyucture tag
int number; e

char name [NAME LEN+1];

int on_hand;
bi
Note that a semicolon must follow the right brace.

Structure Variables

The part tag can be used to declare variables:
struct part partl, part2;

We cannot drop the word struct:

part partl, part2; /**%* WRONG ***/
part isn’t a type name; without the word
struct, it is meaningless.

Since structure tags aren’ t recognized unless
preceded by the word struct, they don’t conflict
with other names used in a program.

Declaring a Structure Tag

The declaration of a structure tag can be combined
with the declaration of structure variables:
struct part {

int number;

char name [NAME LEN+1];

int on_hand;
} partl, part2;
All structures declared to have type struct part are
compatible with one another:
struct part partl = {528, "Disk drive", 10};
struct part part2;

part2 = partl;
/* legal; both parts have the same type */

3/20/14

Structure Representation

¢ Abstract representations of a structure:

2000
number
2001
name number name on_hand number
- 2002

on_hand 2003

¢ Assumptions: 2029
o partl is located at address 2000. 2030

o Integers occupy four bytes. o on_hand
2032

¢ Appearance of partl —>) : }me

o NAME_LEN has the value 25.
o There are no gaps between the members.

2033

Type Definition

* The #define directive can be used to create a

“Boolean type” macro:
#define BOOL int

* A better way to define a synonym for existing

(complicated) types is to use type definition:
typedef int Bool;
typedef int* Intptr;

* Array and pointer types cannot be defined as
macros.

* typedef names are subject to the same scope rules
as variables.

typedef and Structures

* Instead of
struct part partl;
use
typedef struct part Part;
then
Part partl;
* Part isanew user-defined type and can be used
in the same way as the built-in types.

* typedefed type names by convention have the
first letter in uppercase.

Structure Variable Declaration

struct part { typedef struct part {

int number; int number;
char name[NAME LEN+1]; char name[NAME_LEN+1];
int on_hand; int on_hand;

} partl, part2; } Part;

int main() { int main() {

struct part part3;
/* skipped */
} }

Part partl, part2, part3;
/* skipped */

e When it comes time to name a structure, we can
usually choose either to declare a structure tag or to use
typedef.

Scope of Structure Variables

*» Each structure represents

a new scope. struct part{
int number;

* Any names declared in
that scope won’ t conflict
with other names in a

int on_hand;
partl, part2;

struct employee{

program. char name [NAME_LEN+1] ;
* In C terminology, each i:t number ;
char sex;

structure has a separate
name space for its
members.

employeel, employee2;

char name[NAME LEN+1];

Initializing Structure Variables

A structure declaration may include an initializer:

struct part{

int number;

char name[NAME_ LEN+1];

int on_hand;

partl = {528, "Disk drive", 10},
part2 = {914, "Printer cable", 5};

* Appearance of partl after initialization:

number 528
name |Disk drive

on_hand 10

3/20/14

Initializing Structure Variables

* Structure initializers follow rules similar to those
for array initializers.

An initializer can have fewer members than the

structure it’ s initializing.

* Any “leftover” members are given 0 as their initial
value.

* Like array initializations, this only works at the
time of declaration.

* Afterwards you must assign/initialize each member

one by one.

Member Reference/Assignment

* To access a member within a structure, we write
o structVar . memberName

printf ("Part number: %d\n", partl.number);
printf ("Part name: %s\n", partl.name);
printf ("Quantity on hand: %d\n", partl.on_hand);

» The members of a structure are Ivalues.
o structVar . memberName = exp;
partl.number = 258;
/* changes partl's part number */
partl.on_hand++;
/* increments partl's quantity on hand */

. Operator

* The period used to access a structure member is
actually a C operator.
« It takes precedence over nearly all other operators.
* Example:
scanf ("%d", &partl.on_hand);
The . operator takes precedence over the &

operator, so & computes the address of
partl.on hand.

Structure Assignment

* The other major structure operation is assignment:
part2 = partl;

* The effect of this statement is to copy
partl.number into part2.number,
partl.name into part?2.name, and so on.

* Each member’ s value will be copied

* Arrays can’t be copied using the = operator, but an
array embedded within a structure is copied when the
enclosing structure is copied.
struct { int a[10]; } al, a2;
al = a2;
/* legal, since al and a2 are structures */

Structure Assignment

The = operator can be used only with structures of
compatible types.
o Two structures declared at the same time (as part]
and part2 were) are compatible.
o Structures declared using the same “structure tag”
or the same type name are also compatible.

Other than assignment, C provides no operations
on entire structures.

In particular, the == and != operators can’ t be used
with structures.

Structures as Arguments

A function with a structure argument:

void print_part(struct part p)
{
printf ("Part number: %d\n", p.number);
printf ("Part name: %$s\n", p.name);
printf ("Quantity on hand: %d\n", p.on_hand);
}

Acallof print part:
print_part (partl);

Structures as Return Values

* A function that returns a part structure:

struct part build part (int number,
const char *name,
int on_hand)

struct part p;
p.number = number;
strcpy (p.name, name);
p.on_hand = on_hand;
) return p;
* Acallofbuild part:

partl = build part (528, "Disk drive", 10);

3/20/14

Pointer to Structure

* Passing a structure to a function and returning a
structure from a function both require making a
copy of all members in the structure.

* To modify the original value, pass the pointer to a
structure

void updateNumOnHand (Part *b) {
(*b) .on_hand += 10;
}

int main() {

Part a = initialization ;
updateNumOnHand (&a) ;
return 0;

}

Pointer to Structure
* To deal with pointers to structure, the shorthand
form is more commonly used.
* Pattern
o StructPtrVar>member of structure ;

void updateNumOnHand (Part *b) {
b->on_hand += 10; /* same as (*b).on_hand */
}

int main() {
Part a = initialization ;
updateNumOnHand (&a) ;
return 0;

}

Nested Arrays and Structures

* Structures and arrays can be combined without
restriction.

* Arrays may have structures as their elements, and
structures may contain arrays and structures as
members.

Nested Structures

* Nesting one structure inside another is often useful.
struct person_name {
char first[FIRST NAME_LEN+1];
char middle_initial;
char last[LAST_NAME LEN+1];

ééruct student {
struct person_name name;
int id, age;
char sex;
} studentl, student2;
* Accessing student1’s first name:

strcpy (studentl.name.first, "Fred");

Nested Structures

+ Copying the information from a person_name
structure to the name member of a student structure
would take one assignment instead of three:

struct person_name new_name;

studentl.name = new_name;

Arrays of Structures

* An array of structures can serve as a simple
database.

* Anarray of part structures:

struct part inventory[100];

Accessing a part in the array :

print part (inventory([i]);

Accessing a member within a part structure:
inventory[i] .number = 883;
* Accessing a single character in a part name:

inventory[i].name[0] = '\0';

3/20/14

Initializing an Array of Structures

« Initializing an array of structures is done in much the same
way as initializing a multidimensional array.

* Each structure has its own brace-enclosed initializer; the
array initializer wraps another set of braces around the
structure initializers.

Example: an array that contains country codes used when
making international telephone calls.
struct dialing code {
char *country;
int code;
bi

Initializing an Array of Structures

const struct dialing_code country_codes[] =

{{" 54}, angladesh", 880},
55}, urma (Myanmar)", 95},
86}, olombia", 57},
ongo, Dem. Rep. of", 243}, gypt", 20},
i SHI rance", 33},
49}, ndia", 91},
{"Indonesia", 62}, {"Iran", 98},
{"Italy", 39}, {"Japan", 81},
{"Mexico", 52}, {"Nigeria", 234y},
{"Pakistan", 92}, {"Philippines", 63},
{"Poland", 48}, {"Russia", T},
{"South Africa", 27}, {"South Korea", 82},
{"spain", 34}, {"Sudan", 249},
{"Thailand", 66}, {"Turkey", 90},
{"Ukraine", 380}, {"United Kingdom", 44},
{"United States", 1}, {"Vietnam", 84}1};

* The inner braces around each structure value are optional.
. .

Unions

e A union, like a structure, consists of one or more
members, possibly of different types.

* The compiler allocates only enough space for the

largest of the members, which overlay each other
within this space.

* Assigning a new value to one member alters the

values of the other members as well.

struct { o union {
Hnthi; int i; i{%}f
float £; £ float f£;

}s; }ou; N

Unions — Member Access

* Members of a union are accessed in the same way
as members of a structure:
u.i = 82;
u.d = 74.8;
* Changing one member of a union alters any value
previously stored in any of the other members.
o Storing a value in u. d causes any value previously
stored in u. 1 to be lost.
o Changing u. i corrupts u.d.

Unions

* The properties of unions are almost identical to the

properties of structures.

* We can declare union tags and union types in the

same way we declare structure tags and types.

* Like structures, unions can be copied using the =

operator, passed to functions, and returned by
functions.

3/20/14

Initializing Unions

* Only the first member of a union can be given an
initial value.
* How to initialize the 1 member of u to 0:
union {
int i;
double d;
}ou = {0};

Using Unions to Save Space

struct catalog item {
int stock number;
double price;
int item type;
union { ~
struct {
char title[TITLE LEN+1];
char author [AUTHOR LEN+1];
int num pages; -
} book;
struct {
char design[DESIGN_LEN+1];
} mug; -
struct {
char design[DESIGN LEN+1];
int colors; -
int sizes;
} shirt;
} item;
Yi

Using Unions to Save Space

If cisacatalog item structure that represents
a book, we can print the book s title in the
following way:

printf ("%s", c.item.book.title);

As this example shows, accessing a union that’ s
nested inside a structure can be awkward.

Unions Usage

e Mixed types typedef union{ Number a[100];

Enumerations

* A special type in C whose values are enumerated
by the programmer

* A way to group a set of related #defines.

#define SUIT int enum {CLUB, DIAMOND, HEART, SPADE};
#define CLUB 0
#define DIAMOND 1
#define HEART 2

enum SUIT {CLUB, DIAMOND, HEART, SPADE};
SUIT sl = HEART, s2;

#define SPADE 3 typedef enum {CLUB,DIAMOND,HEART,6SPADE} Suit;

typedef enum {FALSE, TRUE} Bool;

* Ifunspecified, enums by default start from 0 and
increment by 1

int i; a[0].i = 5;
float £; a[l].f = 5.5;
} Number;
)
Tag field typedef struct { void print(Number n){
int type; switch(n.type) {
union{ case (INTEGER) :
int i; printf("%d", n.u.i);
float £; case (FLOAT) :
} u; printf ("$£", n.u.f);
} Number; }
}
\
Enumerations

* All enums are integers.

* More flexible enum
o Specify values: enum REDSUIT {HEART=10, DIAMOND=1};

o If no value specified, value is 1 greater than the
previous constant (first constant is by default 0):

enum EGA {BLACK,LTGRAY=7,DKGRAY,WHITE=15} ;

* C allows mixing enum and int

enum {CLUB,DIAMOND,HEART,SPADE} s;
int i = DIAMOND; // i is 1

s = 2; // s is HEART

i++; // i is HEART

Enumerations

* The names of enumeration constants must be
different from other identifiers declared in the
enclosing scope.

* Enumeration constants are similar to constants
created with the #define directive, but they ' re
not equivalent.

e Ifan enumeration is declared inside a function, its
constants won’ t be visible outside the function.

3/20/14

Enumeration Tags and Type Names

* As with structures and unions, to name an enumeration:

o by declaring a tag
o by using typedef to create a genuine type name.
* Enumeration tags :

enum suit {CLUBS, DIAMONDS, HEARTS, SPADES};
enum suit sl, s2;

Use typedef to make Suit a type name:

typedef enum {CLUBS, DIAMONDS, HEARTS, SPADES} Suit;
Suit sl, s2;

typedef enum {FALSE, TRUE} Bool;

Enumerations as Integers

* Enumeration values can be mixed with ordinary
integers:
int 1i;
enum {CLUBS, DIAMONDS, HEARTS, SPADES} s;

i = DIAMONDS; /* 1 is now 1 */
s 0; /* s is now 0 (CLUBS) 7/
s++; /* s is now 1 (DIAMONDS) */
i s + 2; /* 1 is now 3 7/

s is treated as a variable of some integer type.

CLUBS, DIAMONDS, HEARTS, and SPADES are
names for the integers 0, 1, 2, and 3.

Enumerations as Integers

« It’s dangerous to use an integer as an enumeration
value.

» For example, we might accidentally store the
number 4—which doesn’ t correspond to any suit
—into s.

Using Enumerations
to Declare “Tag Fields”

* Enumerations are perfect for determining which
member of a union was the last to be assigned a
value.

* In the Number structure, we can make the kind
member an enumeration instead of an int:
typedef struct {

enum {INT KIND, DOUBLE KIND} kind;
union {
int 1i;
double d;
} ou;
} Number;

Using Enumerations
to Declare “Tag Fields”

* The new structure is used in exactly the same way
as the old one.
» Advantages of the new structure:
o Does away with the INT KIND and
DOUBLE_KIND macros
o Makes it obvious that kind has only two possible
values: INT KIND and DOUBLE_KIND

