
3/20/14	

1	

Structures, Unions, and
Enumerations

Based on slides from K. N. King and Dianna Xu

Bryn Mawr College

CS246 Programming Paradigm

Structure
•  Structures group multiple (heterogeneous)

variables
o The elements of a structure (its members) aren’t

required to have the same type.
o The members of a structure have names; to select a

particular member, we specify its name, not its
position.

•  In some languages, structures are called records,
and members are known as fields.

Structure Operations
•  Structure type declaration
•  Structure variable declaration
•  Member assignment/reference
•  Structure initialization
•  Structure assignment

Structure Type (Structure Tag)
•  Suppose that a program needs to declare several

structure variables with identical members.
•  A structure tag is a name used to identify a

particular kind of structure.
•  The declaration of a structure tag named part:
 struct part {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
 };

•  Note that a semicolon must follow the right brace.

Structure tag

Structure Variables
•  The part tag can be used to declare variables:
 struct part part1, part2;

•  We cannot drop the word struct:
 part part1, part2; /*** WRONG ***/

 part isn’t a type name; without the word
struct, it is meaningless.

•  Since structure tags aren’t recognized unless
preceded by the word struct, they don’t conflict
with other names used in a program.

Declaring a Structure Tag
•  The declaration of a structure tag can be combined

with the declaration of structure variables:
 struct part {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
 } part1, part2;

•  All structures declared to have type struct part are
compatible with one another:

 struct part part1 = {528, "Disk drive", 10};
 struct part part2;

 part2 = part1;
 /* legal; both parts have the same type */

3/20/14	

2	

Structure Representation
•  Abstract representations of a structure:

•  Appearance of part1
•  Assumptions:

o  part1 is located at address 2000.
o  Integers occupy four bytes.
o  NAME_LEN has the value 25.
o  There are no gaps between the members.

Type Definition
•  The #define directive can be used to create a
“Boolean type” macro:

 #define BOOL int

•  A better way to define a synonym for existing
(complicated) types is to use type definition:

 typedef int Bool;
 typedef int* Intptr;

•  Array and pointer types cannot be defined as
macros.

•  typedef names are subject to the same scope rules
as variables.

typedef and Structures
•  Instead of

struct part part1;
 use
typedef struct part Part;

 then
Part part1;

•  Part is a new user-defined type and can be used
in the same way as the built-in types.

•  typedefed type names by convention have the
first letter in uppercase.

Structure Variable Declaration
struct part {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
} part1, part2;

int main() {
 struct part part3;
 /* skipped */
}

typedef struct part {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
} Part;

int main() {
 Part part1, part2, part3;
 /* skipped */
}

•  When it comes time to name a structure, we can
usually choose either to declare a structure tag or to use
typedef.

Scope of Structure Variables
•  Each structure represents

a new scope.
•  Any names declared in

that scope won’t conflict
with other names in a
program.

•  In C terminology, each
structure has a separate
name space for its
members.

 struct part{
 int number;
 char name[NAME_LEN+1];
 int on_hand;
 } part1, part2;

 struct employee{
 char name[NAME_LEN+1];
 int number;
 char sex;
 } employee1, employee2;

Initializing Structure Variables
•  A structure declaration may include an initializer:
 struct part{
 int number;
 char name[NAME_LEN+1];
 int on_hand;
 } part1 = {528, "Disk drive", 10},
 part2 = {914, "Printer cable", 5};

•  Appearance of part1 after initialization:

3/20/14	

3	

Initializing Structure Variables
•  Structure initializers follow rules similar to those

for array initializers.
•  An initializer can have fewer members than the

structure it’s initializing.
•  Any “leftover” members are given 0 as their initial

value.
•  Like array initializations, this only works at the

time of declaration.
•  Afterwards you must assign/initialize each member

one by one.

Member Reference/Assignment
•  To access a member within a structure, we write

o  structVar.memberName
 printf("Part number: %d\n", part1.number);
 printf("Part name: %s\n", part1.name);
 printf("Quantity on hand: %d\n", part1.on_hand);

•  The members of a structure are lvalues.
o  structVar.memberName = exp;

 part1.number = 258;
 /* changes part1's part number */
 part1.on_hand++;
 /* increments part1's quantity on hand */

. Operator
•  The period used to access a structure member is

actually a C operator.
•  It takes precedence over nearly all other operators.
•  Example:
 scanf("%d", &part1.on_hand);

 The . operator takes precedence over the &
operator, so & computes the address of
part1.on_hand.

Structure Assignment
•  The other major structure operation is assignment:
 part2 = part1;

•  The effect of this statement is to copy
part1.number into part2.number,
part1.name into part2.name, and so on.

•  Each member’s value will be copied
•  Arrays can’t be copied using the = operator, but an

array embedded within a structure is copied when the
enclosing structure is copied.

 struct { int a[10]; } a1, a2;
 a1 = a2;
 /* legal, since a1 and a2 are structures */

Structure Assignment
•  The = operator can be used only with structures of

compatible types.
o Two structures declared at the same time (as part1

and part2 were) are compatible.
o Structures declared using the same “structure tag”

or the same type name are also compatible.
•  Other than assignment, C provides no operations

on entire structures.
•  In particular, the == and != operators can’t be used

with structures.

Structures as Arguments
•  A function with a structure argument:
 void print_part(struct part p)
 {
 printf("Part number: %d\n", p.number);
 printf("Part name: %s\n", p.name);
 printf("Quantity on hand: %d\n", p.on_hand);
 }

•  A call of print_part:
 print_part(part1);

3/20/14	

4	

Structures as Return Values
•  A function that returns a part structure:
 struct part build_part(int number,
 const char *name,
 int on_hand)
 {
 struct part p;
 p.number = number;
 strcpy(p.name, name);
 p.on_hand = on_hand;
 return p;
 }

•  A call of build_part:
 part1 = build_part(528, "Disk drive", 10);

Pointer to Structure
•  Passing a structure to a function and returning a

structure from a function both require making a
copy of all members in the structure.

•  To modify the original value, pass the pointer to a
structure

void updateNumOnHand(Part *b) {
 (*b).on_hand += 10;
}

int main() {
 Part a = initialization;
 updateNumOnHand (&a);
 return 0;
}

Pointer to Structure
•  To deal with pointers to structure, the shorthand

form is more commonly used.
•  Pattern

o StructPtrVaràmember_of_structure;

void updateNumOnHand(Part *b) {
 b->on_hand += 10; /* same as (*b).on_hand */
}

int main() {
 Part a = initialization;
 updateNumOnHand (&a);
 return 0;
}

Nested Arrays and Structures
•  Structures and arrays can be combined without

restriction.
•  Arrays may have structures as their elements, and

structures may contain arrays and structures as
members.

Nested Structures
•  Nesting one structure inside another is often useful.
 struct person_name {
 char first[FIRST_NAME_LEN+1];
 char middle_initial;
 char last[LAST_NAME_LEN+1];
 };
struct student {

 struct person_name name;
 int id, age;
 char sex;
 } student1, student2;
•  Accessing student1’s first name:
 strcpy(student1.name.first, "Fred");

Nested Structures
•  Copying the information from a person_name

structure to the name member of a student structure
would take one assignment instead of three:

 struct person_name new_name;
 …
 student1.name = new_name;

3/20/14	

5	

Arrays of Structures
•  An array of structures can serve as a simple

database.
•  An array of part structures:
 struct part inventory[100];

•  Accessing a part in the array :
 print_part(inventory[i]);
•  Accessing a member within a part structure:
 inventory[i].number = 883;

•  Accessing a single character in a part name:
 inventory[i].name[0] = '\0';

Initializing an Array of Structures
•  Initializing an array of structures is done in much the same

way as initializing a multidimensional array.
•  Each structure has its own brace-enclosed initializer; the

array initializer wraps another set of braces around the
structure initializers.

•  Example: an array that contains country codes used when
making international telephone calls.

 struct dialing_code {
 char *country;
 int code;
 };

Initializing an Array of Structures
const struct dialing_code country_codes[] =
 {{"Argentina", 54}, {"Bangladesh", 880},
 {"Brazil", 55}, {"Burma (Myanmar)", 95},
 {"China", 86}, {"Colombia", 57},
 {"Congo, Dem. Rep. of", 243}, {"Egypt", 20},
 {"Ethiopia", 251}, {"France", 33},
 {"Germany", 49}, {"India", 91},
 {"Indonesia", 62}, {"Iran", 98},
 {"Italy", 39}, {"Japan", 81},
 {"Mexico", 52}, {"Nigeria", 234},
 {"Pakistan", 92}, {"Philippines", 63},
 {"Poland", 48}, {"Russia", 7},
 {"South Africa", 27}, {"South Korea", 82},
 {"Spain", 34}, {"Sudan", 249},
 {"Thailand", 66}, {"Turkey", 90},
 {"Ukraine", 380}, {"United Kingdom", 44},
 {"United States", 1}, {"Vietnam", 84}};

•  The inner braces around each structure value are optional.

Unions
•  A union, like a structure, consists of one or more

members, possibly of different types.
•  The compiler allocates only enough space for the

largest of the members, which overlay each other
within this space.

•  Assigning a new value to one member alters the
values of the other members as well.

struct {
 int i;

 float f;

} s;

union {
 int i;

 float f;

} u;

i

f

s

f

i

u

Unions – Member Access
•  Members of a union are accessed in the same way

as members of a structure:
 u.i = 82;

 u.d = 74.8;

•  Changing one member of a union alters any value
previously stored in any of the other members.
o Storing a value in u.d causes any value previously

stored in u.i to be lost.
o Changing u.i corrupts u.d.

Unions
•  The properties of unions are almost identical to the

properties of structures.
•  We can declare union tags and union types in the

same way we declare structure tags and types.
•  Like structures, unions can be copied using the =

operator, passed to functions, and returned by
functions.

3/20/14	

6	

Initializing Unions
•  Only the first member of a union can be given an

initial value.
•  How to initialize the i member of u to 0:
 union {
 int i;
 double d;
 } u = {0};

Using Unions to Save Space
struct catalog_item {
 int stock_number;
 double price;
 int item_type;
 union {
 struct {
 char title[TITLE_LEN+1];
 char author[AUTHOR_LEN+1];
 int num_pages;
 } book;
 struct {
 char design[DESIGN_LEN+1];
 } mug;
 struct {
 char design[DESIGN_LEN+1];
 int colors;
 int sizes;
 } shirt;
 } item;
};

Using Unions to Save Space
•  If c is a catalog_item structure that represents

a book, we can print the book’s title in the
following way:

 printf("%s", c.item.book.title);

•  As this example shows, accessing a union that’s
nested inside a structure can be awkward.

Unions Usage
•  Mixed types

•  Tag field

typedef union{

 int i;

 float f;

} Number;

Number a[100];

a[0].i = 5;

a[1].f = 5.5;

typedef struct {

 int type;

 union{

 int i;

 float f;

 } u;

} Number;

void print(Number n){

 switch(n.type) {

 case(INTEGER):

 printf("%d", n.u.i);

 case(FLOAT):

 printf("%f", n.u.f);

 }

}

Enumerations
•  A special type in C whose values are enumerated

by the programmer
•  A way to group a set of related #defines.

•  If unspecified, enums by default start from 0 and

increment by 1

#define SUIT int

#define CLUB 0

#define DIAMOND 1

#define HEART 2

#define SPADE 3

enum {CLUB, DIAMOND, HEART, SPADE};

enum SUIT {CLUB, DIAMOND, HEART, SPADE};

SUIT s1 = HEART, s2;

typedef enum {FALSE, TRUE} Bool;

typedef enum {CLUB,DIAMOND,HEART,SPADE} Suit;

Enumerations
•  All enums are integers.
•  More flexible enum

o Specify values:
o  If no value specified, value is 1 greater than the

previous constant (first constant is by default 0):

•  C allows mixing enum and int

enum REDSUIT {HEART=10, DIAMOND=1};

enum EGA {BLACK,LTGRAY=7,DKGRAY,WHITE=15};

enum {CLUB,DIAMOND,HEART,SPADE} s;

int i = DIAMOND; // i is 1

s = 2; // s is HEART

i++; // i is HEART

3/20/14	

7	

Enumerations
•  The names of enumeration constants must be

different from other identifiers declared in the
enclosing scope.

•  Enumeration constants are similar to constants
created with the #define directive, but they’re
not equivalent.

•  If an enumeration is declared inside a function, its
constants won’t be visible outside the function.

Enumeration Tags and Type Names
•  As with structures and unions, to name an enumeration:

o by declaring a tag
o by using typedef to create a genuine type name.

•  Enumeration tags :
 enum suit {CLUBS, DIAMONDS, HEARTS, SPADES};
enum suit s1, s2;

•  Use typedef to make Suit a type name:
 typedef enum {CLUBS, DIAMONDS, HEARTS, SPADES} Suit;
 Suit s1, s2;

 typedef enum {FALSE, TRUE} Bool;

Enumerations as Integers
•  Enumeration values can be mixed with ordinary

integers:
 int i;
 enum {CLUBS, DIAMONDS, HEARTS, SPADES} s;

 i = DIAMONDS; /* i is now 1 */
 s = 0; /* s is now 0 (CLUBS) */
 s++; /* s is now 1 (DIAMONDS) */
 i = s + 2; /* i is now 3 */

•  s is treated as a variable of some integer type.
•  CLUBS, DIAMONDS, HEARTS, and SPADES are

names for the integers 0, 1, 2, and 3.

Enumerations as Integers
•  It’s dangerous to use an integer as an enumeration

value.
•  For example, we might accidentally store the

number 4—which doesn’t correspond to any suit
—into s.

Using Enumerations
to Declare “Tag Fields”

•  Enumerations are perfect for determining which
member of a union was the last to be assigned a
value.

•  In the Number structure, we can make the kind
member an enumeration instead of an int:

 typedef struct {
 enum {INT_KIND, DOUBLE_KIND} kind;
 union {
 int i;
 double d;
 } u;
 } Number;

Using Enumerations
to Declare “Tag Fields”

•  The new structure is used in exactly the same way
as the old one.

•  Advantages of the new structure:
o Does away with the INT_KIND and
DOUBLE_KIND macros

o Makes it obvious that kind has only two possible
values: INT_KIND and DOUBLE_KIND

