Input/Output

Based on slides from K. N. King and Dianna Xu

Bryn Mawr College
CS246 Programming Paradigm

Streams

* In C, the term stream means any source of input or
any destination for output.

» Accessing a stream is done through a file pointer,
which has type FILE *.

o A variable pointing to a file = FILE *fp;

fp
o The FILE type is declared in <stdio.h>.

o Certain streams are represented by file pointers with
standard names — stdin, stdout and stderr

Standard Streams and Redirection

* <stdio.h> provides three standard streams:

File Pointer Stream Default Meaning
stdin Standard input Keyboard
stdout Standard output Screen
stderr Standard error Screen

* These streams are ready to use—we don’ t declare
them, and we don’t open or close them.

Standard Streams and Redirection

* The I/O functions discussed in previous chapters obtain
input from stdin and send output to stdout.

* Unix allows changing of default meanings through
redirection.

* Input redirection forces a program to obtain its input
from a file instead of from the keyboard:
demo <in.dat

* Output redirection is similar:
demo >out.dat
All data written to stdout will now go into the
out.dat file instead of appearing on the screen.

Standard Streams and Redirection

* Input redirection and output redirection can be
combined:
demo <in.dat >out.dat
demo < in.dat > out.dat
demo >out.dat <in.dat

* Output redirection: everything written to stdout
is put into a file.

* Writing error messages to stderr instead of
stdout guarantees that they will appear on the
screen even when stdout has been redirected.

Text Files vs Binary Files

* <stdio.h> supports two kinds of files:

o Text file: a sequence of bytes that represent characters,
allowing humans to examine or edit the file.

« E.g., the source code for a C program.

text |[00000011 [0000010 [00000111 [00000110[00000111 ‘
13! FX "7 6 17
o Binary file: bytes don’ t necessarily represent
characters.

 Groups of bytes might represent other types of data,
such as integers and floating-point numbers.

 E.g., an executable C program.

binary 11111111

Text Files vs Binary Files

+ Text files have two characteristics that binary files
don’t possess.

» Text files are divided into lines. Each line in a text
file normally ends with one or two special
characters.

o Windows: carriage-return character (' \x0d")
followed by line-feed character (' \x0a")

o UNIX and newer versions of Mac OS: line-feed
character

o Older versions of Mac OS: carriage-return character

3/25/14

Text Files vs Binary Files

Text files may contain a special “end-of-file”
marker.
o In Windows, the marker is '\x1la' (Ctrl-Z), but it
is not required.
o Most other operating systems, including UNIX,
have no special end-of-file character.
In a binary file, there are no end-of-line or end-of-
file markers; all bytes are treated equally.

In this lecture we cover text file I/O.

Opening a File
* Opening a file for use as a stream requires a call of the
fopen function.

* Prototype for fopen:

FILE *fopen(const char * filename,
const char * mode);

¢ filename is the name of the file to be opened.
o may include information about the file”s location, such
as a drive specifier or path.
* mode is a “mode string” that specifies what operations
we intend to perform on the file.
« Returns the null pointer NULL (zero) on error, i.e.
trying to read a file that doesn’ t exist.

Opening a File

In Windows, be careful when the file name in a call of
fopen includes the \ character.

The call

fopen ("c:\project\testl.dat", "r")

will fail, because \ t is treated as a character escape.
One way to avoid the problem is to use \ \ instead of \:
fopen ("c:\\project\\testl.dat", "r")

An alternative is to use the / character instead of \:
fopen ("c:/project/testl.dat", "r")

Opening a File
» fopen returns a file pointer that the program can
(and usually will) save in a variable:
fp = fopen("in.dat", "r");
/* opens in.dat for reading */

* When it can’t open a file, fopen returns a null
pointer.

Modes

Factors that determine which mode string to pass to
fopen:

o Which operations are to be performed on the file

o Whether the file contains text or binary data

Mode strings for text files:

String Meaning

=t Open for reading

"w" Open for writing (file need not exist)

"a" Open for appending (file need not exist)
"r4" Open for reading and writing, starting at beginning
"wt" Open for reading and writing (truncate if file exists)
"at+" Open for reading and writing (append if file exists)

Modes

* Special rules apply when a file is opened for both
reading and writing.

o Can’t switch from reading to writing without first
calling a file-positioning function unless the reading
operation encountered the end of the file.

o Can’ t switch from writing to reading without either
calling £f1ush or calling a file-positioning
function.

3/25/14

Closing a File

The fclose function allows a program to close a
file that it’ s no longer using.

The argument to fclose must be a file pointer
obtained from a call of fopen or freopen.

fclose returns zero if the file was closed
successfully.

Otherwise, it returns the error code EOF (a macro
defined in <stdio.h>).

Closing a File

* The outline of a program that opens a file for reading:

#include <stdio.h>
#include <stdlib.h>

#define FILE NAME "example.dat"

int main(void)
{
FILE *fp;
fp = fopen(FILE_NAME, "r");
if (fp == NULL) {
printf("Can't open %s\n", FILE_NAME);
exit (EXIT_FAILURE) ;

fclose (fp);
return 0;

Closing a File

« It’s not unusual to see the call of fopen combined
with the declaration of fp:
FILE *fp = fopen(FILE_NAME, "r");
or the test against NULL:
if ((fp = fopen(FILE NAME, "r")) == NULL)

Program: Checking Whether
a File Can Be Opened

* The canopen. c program determines if a file
exists and can be opened for reading.

* The user will give the program a file name to
check:
canopen file

* The program will then print either file can be
opened or file can't be opened.

* If the user enters the wrong number of arguments
on the command line, the program will print the
message usage: canopen filename.

canopen.c
/* Checks whether a file can be opened for reading */

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
FILE *fp;

if (argc !'= 2) {
printf ("usage: canopen filename\n");
) exit (EXIT_FAILURE) ;

if ((fp = fopen(argv[1l], "r")) == NULL) {
printf("%s can't be opened\n", argv[1]);
} exit (EXIT_FAILURE) ;

printf ("%s can be opened\n", argv[l]):;
fclose (fp) ;
return 0;

3/25/14

File Buffering

* It takes time to transfer the buffer contents to or
from disk, but one large “block move” is much
faster than many tiny byte moves.

A call that flushes the buffer for the file associated
with fp:

fflush (fp); /* flushes buffer for fp */
A call that flushes a// output streams:

fflush (NULL); /* flushes all buffers */

« fflush returns zero if it’ s successful and EOF if
an error occurs.

Formatted I/O

Reading — returns number of matches or EOF

int fscanf(FILE *fp, "..", variableList) ;
Writing — returns number of chars written
int fprintf(FILE *fp, "..",

variableList) ;
scanf is equivalent to £scanf with stdin
printf to fprintf with stdout

The ..printf Functions

* printf always writes to stdout, whereas
fprintf writes to the stream indicated by its first
argument:
printf ("Total: %d\n", total);

/* writes to stdout */
fprintf (fp, "Total: %d\n", total);
/* writes to fp */

* Acall of printf is equivalent to a call of

fprintf with stdout as the first argument.

The ..printf Functions

fprintf works with any output stream.
One of its most common uses is to write error
messages to stderr:

fprintf (stderr, "Error: data file can't be opened.
\n") ;

Writing a message to stderr guarantees that it
will appear on the screen even if the user redirects
stdout.

Examples of ..printf
Conversion Specifications

» Examples showing the effect of flags on the $d
conversion:

Conversion Result of Applying Result of Applying

Specification Conversion to 123 Conversion to —123
38d ceeee123 cese-123
%-8d 123eeees ~123eees
%+8d ceeet123 eeee-123
3 8d ceeee123 cese-123
$08d 00000123 -0000123
%-+8d 4123000 ~123eee.
%- 8d ©123eeee ~123eees
%+08d +0000123 -0000123
% 08d +0000123 -0000123

Examples of ..printf
Conversion Specifications

Examples showing the effect of the minimum field
width and precision on the %s conversion:
Result of Applying Result of Applying

Conversion Conversion to Conversion to
Specification "bogus" "buzzword"
%6s *bogus buzzword
%-6s bogus- buzzword
%.4s bogu buzz
%6.4s **bogu eebuzz
%-6.4s boguse - buzze-e

3/25/14

Examples of ..printf
Conversion Specifications

The * character allows us to specify minimum field width
and/or precision as argument(s) after the format string.

A major advantage of * is that it allows us to use a macro
to specify the width or precision:

printf ("$*d", WIDTH, i);

The width or precision can even be computed during
program execution:

printf ("$*d", page_width / num _cols, 1i);
Calls of printf that produce the same output:
printf("%$6.4d", 1i);
printf ("%*.4d", 6, 1i);
printf("%$6.*d", 4, i);
printf ("$*.*d", 6, 4,

N

i)

Examples of ..printf
Conversion Specifications

» The %$p conversion is used to print the value of a

pointer:
printf ("$p", (void *) ptr);
/* displays value of ptr */
o The pointer is likely to be shown as an octal or
hexadecimal number.

* The $n conversion is used to find out how many

characters have been printed so far by a call of
printf.

o After the following call, the value of 1en will be 3:
printf ("$d%n\n", 123, &len);

The ...scanf Functions

» scanf always reads from stdin, whereas
fscanf reads from the stream indicated by its
first argument:
scanf ("%d%d", &i, &Jj):

/* reads from stdin */
fscanf (fp, "%d%d", &i, &3j);
/* reads from fp */

* Acall of scanf is equivalent to a call of fscanf

with stdin as the first argument.

The ...scanf Functions

* The ..scanf functions return the number of data

items that were read and assigned to objects.

* They return EOF if no more input characters could

be read before any data items can be read.

* Loops that test scanf’s return value are common.
* Aloop that reads a series of integers one by one,

stopping at the first sign of trouble:
while (scanf ("%d", &i) == 1) {

N

..scanf Format Strings

* The format string represents a pattern that a ...
scanf function attempts to match as it reads
input.

o If the input doesn’t match the format string, the
function returns.

o The input character that didn’t match is “pushed
back” to be read in the future.

..scanf Format Strings

* The format string "ISBN $d-%d-%$1d-%d"
specifies that the input will consist of:
o the letters ISBN
o possibly some white-space characters
o an integer
o the - character
o an integer (possibly preceded by white-space characters)
o the - character
o a long integer (possibly preceded by white-space characters)
o the - character
o an integer (possibly preceded by white-space characters)

3/25/14

scanf Examples

Examples that combine conversion specifications, white-
space characters, and non-white-space characters:

scanf Call Input Variables
n = scanf ("$d%d", &i, &j): T2+, *34n

12
unchanged
n = scanf ("%d, %d", &i, &Jj); 12e,34n
12
unchanged
2

12

34

1

12

: unchanged

n = scanf ("%d ,%d", &i, &j); IT2e5e34n

n = scanf("%d, %d", &i, &j); I2e,+34m

o oty el vl =)

scanf Examples

Examples showing the effect of assignment suppression and
specifying a field width:

scanf Call Input Variables
= scanf ("%$*d%d", &i); 1+2+34n n: 1
i:34

= scanf ("$*s%s", str); MyeFaireLady® n:l
str:"Fair"

= scanf ("%$1d%2d%3d", 123450 n:3

&i, &3, &k); il

j:23

k: 45

= scanf ("%2d%2s%2d", 1234560 n:3

&i, str, &j); i 12
strieSa

j:56

..scanf Conversion Specifications

% [set] matches any sequence of characters in set (the
scanset) , where set can be any set of characters.

% [~set] matches any sequence of characters not in set.
Examples:
[abc] matches any string containing only a, b, and c.

[
S
3
S

scanf Call Input Variables

n = scanf ("%[0123456789]", str); 123abcr n:l
str: HI2ey

n = scanf ("%$[0123456789]1", str); abcl23m n: 0
str:unchanged

n = scanf("%[~0123456789]", str); abcl23nm n:l
str: "abc”

. .

[~abc] matches any string that doesn’t contain a, b, or c.

fscanf and fprintf

Reading — returns number of matches or EOF
int fscanf(FILE *fp, "..", variableList) ;
Writing — returns number of chars written
int fprintf(FILE *fp, "..",
variableList) ;
scanf is equivalent to £scanf with stdin
printf to fprintf with stdout

Character I/O

* Reading — returns char read or EOF

int fgetc(FILE *fp)

int getc(FILE *fp) // macro

int getchar() <==> int fgetc(stdin)
* Writing — returns char written

int fputc(int ¢, FILE *fp)

int putc(int ¢, FILE *fp) // macro

int putchar(int c) <==> int fputc(..,

stdin)
int ungetc(int c, FILE *fp)

Character I/O

getchar reads a character from stdin:

ch = getchar();

fgetc and getc read a character from an arbitrary
stream:

ch = fgetc(fp); ch = getc(fp);

All three functions treat the character as an
unsigned char value (which is then converted to
int type before it’s returned).

As a result, they never return a negative value other
than EOF.

Character I/O

* One of the most common uses of fgetc, getc,
and getchar is to read characters from a file.

» Atypical while loop for that purpose:
while ((ch = getc(fp)) !'= EOF) {

}
* Always store the return value in an int variable,
not a char variable.

* Testing a char variable against EOF may give the
wrong result.

3/25/14

Character I/O

* The ungetc function “pushes back” a character
read from a stream and clears the stream’ s end-of-
file indicator.

* Aloop that reads a series of digits, stopping at the
first nondigit:
while (isdigit(ch = getc(fp))) {

}

ungetc(ch, fp);
/* pushes back last character read */

Character I/O

¢ putchar writes one character to the stdout stream:
putchar (ch) ; /* writes ch to stdout */

e fputc and putc write a character to an arbitrary
stream:

fputc(ch, fp); /* writes ch to fp */
putc(ch, fp); /* writes ch to fp */

File copy by Char:

FILE *in, *out;

// open both src and dest files as

// in and out, respectively

while ((c = fgetc(in)) != EOF) {
fputc(c, out);

Line I/O

* Reading — returns pointer to string read, NULL if
end of file

char* fgets(char *buf, int max, FILE *fp)

* Strings are character arrays in C

* max indicates the maximum number of characters
to be read.

* max should be 1 less than the length of buf!

* getsisequivalent to fgets (.., stdin)

* Writing — returns number of chars written
int fputs(char *buf, FILE *fp)

Example: File Copy by Line

int main() {
char buf[BUFLEN], inFile[BUFLEN], outFile[BUFLEN];
FILE *in, *out;
printf ("Enter source filename: ");
fgets (inFile,BUFLEN-1,stdin) ;
inFile[strlen(inFile)-1] = '\0';
// get outFile as well from user

in = fopen(inFile, "r");

out = fopen(outFile, "w");

if ((in == NULL) || (out == NULL)) {
printf ("*** File open error\n");
return;

}

/* NULL returned at EOF */

while (fgets(buf, BUFLEN-1, in) != NULL) {
fputs (buf, out);

}

fclose(in); fclose (out) ;

return 0;

File Positioning

» Each file has an associated file position
* When a file is opened, the file position is set either
at the beginning or the end
SEEK_SET - beginning of file
SEEK CUR - current file position
SEEK _END - end of file
int fseek (FILE *fp, long offset, int
whence)
void rewind (FILE *fp)
rewind (fp) <==> fseek (fp, OL,
SEEK_SET)

3/25/14

String 1/O

Read and write data using a string as though it
were a stream.

The sprintf function writes output into a
character array (pointed to by its first argument)
instead of a stream.

A call that writes "9/20/2010" into date:
sprintf (date, "%d/%d/%d", 9, 20, 2010);
sprintf adds a null character at the end of the
string.

It returns the number of characters stored (not
counting the null character).

String 1/O

sscanf reads characters from a string.
An example that uses fgets to obtain a line of input,
then passes the line to sscanf for further processing:
fgets(str, sizeof (str), stdin);

/* reads a line of input */
sscanf (str, "%$d%d", &i, &J);

/* extracts two integers */
sscanf returns the number of data items successfully
read and stored.
sscanf returns EOF if it reaches the end of the string
(marked by a null character) before finding the first
item.

akid

String I/O

One advantage of using sscanf is that we can
examine an input line as many times as needed.

This makes it easier to recognize alternate input forms
and to recover from errors.

Consider the problem of reading a date that’ s written
either in the form month/day /year or month-day-
year:

(sscanf (str, "3d /%d /%d", smonth, &day, &year) == 3)
print)f("Month: %d, day: %d, year: %d\n", month, day,
year) ;

elsg if (sscant(str, "d -%d ~id", emonth, &day, &year) ==

printf ("Month: %d, day: %d, year: %d\n", month, day,
year) ;

else

printf ("Date not in the proper form\n");

