
3/25/14	

1	

Input/Output

Based on slides from K. N. King and Dianna Xu

Bryn Mawr College
CS246 Programming Paradigm

Streams
•  In C, the term stream means any source of input or

any destination for output.
•  Accessing a stream is done through a file pointer,

which has type FILE *.
o A variable pointing to a file ⇒ FILE *fp;

o The FILE type is declared in <stdio.h>.
o Certain streams are represented by file pointers with

standard names – stdin, stdout and stderr

fp

Standard Streams and Redirection
•  <stdio.h> provides three standard streams:

 File Pointer Stream Default Meaning
 stdin Standard input Keyboard
 stdout Standard output Screen
 stderr Standard error Screen

•  These streams are ready to use—we don’t declare
them, and we don’t open or close them.

Standard Streams and Redirection
•  The I/O functions discussed in previous chapters obtain

input from stdin and send output to stdout.
•  Unix allows changing of default meanings through

redirection.
•  Input redirection forces a program to obtain its input

from a file instead of from the keyboard:
 demo <in.dat

•  Output redirection is similar:
 demo >out.dat

 All data written to stdout will now go into the
out.dat file instead of appearing on the screen.

Standard Streams and Redirection
•  Input redirection and output redirection can be

combined:
 demo <in.dat >out.dat

 demo < in.dat > out.dat
 demo >out.dat <in.dat

•  Output redirection: everything written to stdout
is put into a file.

•  Writing error messages to stderr instead of
stdout guarantees that they will appear on the
screen even when stdout has been redirected.

Text Files vs Binary Files
•  <stdio.h> supports two kinds of files:

o Text file: a sequence of bytes that represent characters,
allowing humans to examine or edit the file.

•  E.g., the source code for a C program.

o Binary file: bytes don’t necessarily represent

characters.
•  Groups of bytes might represent other types of data,

such as integers and floating-point numbers.
•  E.g., an executable C program.

text 00000011 0000010 00000111 00000110 00000111

'3' '2' '7' '6' '7'

01111111 11111111 binary

3/25/14	

2	

Text Files vs Binary Files
•  Text files have two characteristics that binary files

don’t possess.
•  Text files are divided into lines. Each line in a text

file normally ends with one or two special
characters.
o Windows: carriage-return character ('\x0d')

followed by line-feed character ('\x0a')
o UNIX and newer versions of Mac OS: line-feed

character
o Older versions of Mac OS: carriage-return character

Text Files vs Binary Files
•  Text files may contain a special “end-of-file”

marker.
o  In Windows, the marker is '\x1a' (Ctrl-Z), but it

is not required.
o Most other operating systems, including UNIX,

have no special end-of-file character.
•  In a binary file, there are no end-of-line or end-of-

file markers; all bytes are treated equally.
•  In this lecture we cover text file I/O.

Opening a File
•  Opening a file for use as a stream requires a call of the
fopen function.

•  Prototype for fopen:
 FILE *fopen(const char * filename,
 const char * mode);

•  filename is the name of the file to be opened.
o may include information about the file’s location, such

as a drive specifier or path.
•  mode is a “mode string” that specifies what operations

we intend to perform on the file.
•  Returns the null pointer NULL (zero) on error, i.e.

trying to read a file that doesn’t exist.

Opening a File
•  In Windows, be careful when the file name in a call of
fopen includes the \ character.

•  The call
 fopen("c:\project\test1.dat", "r")

 will fail, because \t is treated as a character escape.
•  One way to avoid the problem is to use \\ instead of \:
 fopen("c:\\project\\test1.dat", "r")

•  An alternative is to use the / character instead of \:
 fopen("c:/project/test1.dat", "r")

Opening a File
•  fopen returns a file pointer that the program can

(and usually will) save in a variable:
 fp = fopen("in.dat", "r");
 /* opens in.dat for reading */

•  When it can’t open a file, fopen returns a null
pointer.

Modes
•  Factors that determine which mode string to pass to
fopen:
o Which operations are to be performed on the file
o Whether the file contains text or binary data

•  Mode strings for text files:
 String Meaning
 "r" Open for reading
 "w" Open for writing (file need not exist)
 "a" Open for appending (file need not exist)
 "r+" Open for reading and writing, starting at beginning
 "w+" Open for reading and writing (truncate if file exists)
 "a+" Open for reading and writing (append if file exists)

3/25/14	

3	

Modes
•  Special rules apply when a file is opened for both

reading and writing.
o Can’t switch from reading to writing without first

calling a file-positioning function unless the reading
operation encountered the end of the file.

o Can’t switch from writing to reading without either
calling fflush or calling a file-positioning
function.

Closing a File
•  The fclose function allows a program to close a

file that it’s no longer using.
•  The argument to fclose must be a file pointer

obtained from a call of fopen or freopen.
•  fclose returns zero if the file was closed

successfully.
•  Otherwise, it returns the error code EOF (a macro

defined in <stdio.h>).

Closing a File
•  The outline of a program that opens a file for reading:
 #include <stdio.h>
 #include <stdlib.h>

 #define FILE_NAME "example.dat"

 int main(void)
 {
 FILE *fp;

 fp = fopen(FILE_NAME, "r");
 if (fp == NULL) {
 printf("Can't open %s\n", FILE_NAME);
 exit(EXIT_FAILURE);
 }
 …
 fclose(fp);
 return 0;
 }

Closing a File
•  It’s not unusual to see the call of fopen combined

with the declaration of fp:
 FILE *fp = fopen(FILE_NAME, "r");

 or the test against NULL:
 if ((fp = fopen(FILE_NAME, "r")) == NULL) …

Program: Checking Whether
a File Can Be Opened

•  The canopen.c program determines if a file
exists and can be opened for reading.

•  The user will give the program a file name to
check:

 canopen file
•  The program will then print either file can be
opened or file can't be opened.

•  If the user enters the wrong number of arguments
on the command line, the program will print the
message usage: canopen filename.

canopen.c

/* Checks whether a file can be opened for reading */

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 FILE *fp;

 if (argc != 2) {
 printf("usage: canopen filename\n");
 exit(EXIT_FAILURE);
 }

 if ((fp = fopen(argv[1], "r")) == NULL) {
 printf("%s can't be opened\n", argv[1]);
 exit(EXIT_FAILURE);
 }

 printf("%s can be opened\n", argv[1]);
 fclose(fp);
 return 0;
}

3/25/14	

4	

File Buffering
•  It takes time to transfer the buffer contents to or

from disk, but one large “block move” is much
faster than many tiny byte moves.

•  A call that flushes the buffer for the file associated
with fp:

 fflush(fp); /* flushes buffer for fp */

•  A call that flushes all output streams:
 fflush(NULL); /* flushes all buffers */

•  fflush returns zero if it’s successful and EOF if
an error occurs.

Formatted I/O
•  Reading – returns number of matches or EOF

int fscanf(FILE *fp, "...", variableList);
•  Writing – returns number of chars written

int fprintf(FILE *fp, "...",
variableList);

•  scanf is equivalent to fscanf with stdin
•  printf to fprintf with stdout

The …printf Functions
•  printf always writes to stdout, whereas
fprintf writes to the stream indicated by its first
argument:

 printf("Total: %d\n", total);
 /* writes to stdout */

 fprintf(fp, "Total: %d\n", total);
 /* writes to fp */

•  A call of printf is equivalent to a call of
fprintf with stdout as the first argument.

The …printf Functions
•  fprintf works with any output stream.
•  One of its most common uses is to write error

messages to stderr:
 fprintf(stderr, "Error: data file can't be opened.
\n");

•  Writing a message to stderr guarantees that it
will appear on the screen even if the user redirects
stdout.

Examples of …printf
Conversion Specifications

•  Examples showing the effect of flags on the %d
conversion:
 Conversion Result of Applying Result of Applying
 Specification Conversion to 123 Conversion to –123
 %8d •••••123 ••••-123
 %-8d 123••••• -123••••
 %+8d ••••+123 ••••-123
 % 8d •••••123 ••••-123
 %08d 00000123 -0000123
 %-+8d +123•••• -123••••
 %- 8d •123•••• -123••••
 %+08d +0000123 -0000123
 % 08d •0000123 -0000123

Examples of …printf
Conversion Specifications

•  Examples showing the effect of the minimum field
width and precision on the %s conversion:

 Result of Applying Result of Applying
 Conversion Conversion to Conversion to
 Specification "bogus" "buzzword"
 %6s •bogus buzzword
 %-6s bogus• buzzword
 %.4s bogu buzz
 %6.4s ••bogu ••buzz
 %-6.4s bogu•• buzz••

3/25/14	

5	

Examples of …printf
Conversion Specifications

•  The * character allows us to specify minimum field width
and/or precision as argument(s) after the format string.

•  A major advantage of * is that it allows us to use a macro
to specify the width or precision:

 printf("%*d", WIDTH, i);

•  The width or precision can even be computed during
program execution:

 printf("%*d", page_width / num_cols, i);
•  Calls of printf that produce the same output:
 printf("%6.4d", i);
 printf("%*.4d", 6, i);
 printf("%6.*d", 4, i);
 printf("%*.*d", 6, 4, i);

Examples of …printf
Conversion Specifications

•  The %p conversion is used to print the value of a
pointer:

 printf("%p", (void *) ptr);
 /* displays value of ptr */
o The pointer is likely to be shown as an octal or

hexadecimal number.
•  The %n conversion is used to find out how many

characters have been printed so far by a call of
printf.
o After the following call, the value of len will be 3:

 printf("%d%n\n", 123, &len);

The …scanf Functions
•  scanf always reads from stdin, whereas
fscanf reads from the stream indicated by its
first argument:

 scanf("%d%d", &i, &j);
 /* reads from stdin */

 fscanf(fp, "%d%d", &i, &j);
 /* reads from fp */

•  A call of scanf is equivalent to a call of fscanf
with stdin as the first argument.

The …scanf Functions
•  The …scanf functions return the number of data

items that were read and assigned to objects.
•  They return EOF if no more input characters could

be read before any data items can be read.
•  Loops that test scanf’s return value are common.
•  A loop that reads a series of integers one by one,

stopping at the first sign of trouble:
 while (scanf("%d", &i) == 1) {
 …
 }

…scanf Format Strings
•  The format string represents a pattern that a …
scanf function attempts to match as it reads
input.
o  If the input doesn’t match the format string, the

function returns.
o The input character that didn’t match is “pushed

back” to be read in the future.

…scanf Format Strings
•  The format string "ISBN %d-%d-%ld-%d"

specifies that the input will consist of:
o  the letters ISBN
o  possibly some white-space characters
o  an integer
o  the - character
o  an integer (possibly preceded by white-space characters)
o  the - character
o  a long integer (possibly preceded by white-space characters)
o  the - character
o  an integer (possibly preceded by white-space characters)

3/25/14	

6	

scanf Examples
•  Examples that combine conversion specifications, white-

space characters, and non-white-space characters:
 scanf Call Input Variables
n = scanf("%d%d", &i, &j); 12•,•34¤ n: 1
 i: 12
 j: unchanged

n = scanf("%d,%d", &i, &j); 12•,•34¤ n: 1
 i: 12
 j: unchanged

n = scanf("%d ,%d", &i, &j); 12•,•34¤ n: 2
 i: 12
 j: 34

n = scanf("%d, %d", &i, &j); 12•,•34¤ n: 1
 i: 12
 j: unchanged

scanf Examples
•  Examples showing the effect of assignment suppression and

specifying a field width:
 scanf Call Input Variables
n = scanf("%*d%d", &i); 12•34¤ n: 1
 i: 34

n = scanf("%*s%s", str); My•Fair•Lady¤ n: 1
 str: "Fair"

n = scanf("%1d%2d%3d", 12345¤ n: 3
 &i, &j, &k); i: 1
 j: 23
 k: 45

n = scanf("%2d%2s%2d", 123456¤ n: 3
 &i, str, &j); i: 12
 str: "34"
 j: 56

…scanf Conversion Specifications
•  %[set] matches any sequence of characters in set (the

scanset) , where set can be any set of characters.
•  %[^set] matches any sequence of characters not in set.
•  Examples:
 %[abc] matches any string containing only a, b, and c.
 %[^abc] matches any string that doesn’t contain a, b, or c.

 scanf Call Input Variables
n = scanf("%[0123456789]", str); 123abc¤ n: 1
 str: "123"

n = scanf("%[0123456789]", str); abc123¤ n: 0
 str: unchanged

n = scanf("%[^0123456789]", str); abc123¤ n: 1
 str: "abc”

fscanf and fprintf
•  Reading – returns number of matches or EOF

int fscanf(FILE *fp, "...", variableList);
•  Writing – returns number of chars written

int fprintf(FILE *fp, "...",
variableList);

•  scanf is equivalent to fscanf with stdin
•  printf to fprintf with stdout

Character I/O
•  Reading – returns char read or EOF

int fgetc(FILE *fp)
int getc(FILE *fp) // macro
int getchar() <==> int fgetc(stdin)

•  Writing – returns char written
int fputc(int c, FILE *fp)
int putc(int c, FILE *fp) // macro
int putchar(int c) <==> int fputc(…,
stdin)

int ungetc(int c, FILE *fp)

Character I/O
•  getchar reads a character from stdin:
 ch = getchar();

•  fgetc and getc read a character from an arbitrary
stream:

 ch = fgetc(fp); ch = getc(fp);

•  All three functions treat the character as an
unsigned char value (which is then converted to
int type before it’s returned).

•  As a result, they never return a negative value other
than EOF.

3/25/14	

7	

Character I/O
•  One of the most common uses of fgetc, getc,

and getchar is to read characters from a file.
•  A typical while loop for that purpose:
 while ((ch = getc(fp)) != EOF) {
 …
 }

•  Always store the return value in an int variable,
not a char variable.

•  Testing a char variable against EOF may give the
wrong result.

Character I/O
•  The ungetc function “pushes back” a character

read from a stream and clears the stream’s end-of-
file indicator.

•  A loop that reads a series of digits, stopping at the
first nondigit:

 while (isdigit(ch = getc(fp))) {
 …
 }
 ungetc(ch, fp);
 /* pushes back last character read */

Character I/O
•  putchar writes one character to the stdout stream:
 putchar(ch); /* writes ch to stdout */

•  fputc and putc write a character to an arbitrary
stream:

 fputc(ch, fp); /* writes ch to fp */
 putc(ch, fp); /* writes ch to fp */

•  File copy by Char:
 FILE *in, *out;
 // open both src and dest files as
 // in and out, respectively
 while ((c = fgetc(in)) != EOF) {
 fputc(c, out);
 }

Line I/O
•  Reading – returns pointer to string read, NULL if

end of file
char* fgets(char *buf, int max, FILE *fp)

•  Strings are character arrays in C
•  max indicates the maximum number of characters

to be read.
•  max should be 1 less than the length of buf!
•  gets is equivalent to fgets(…, stdin)
•  Writing – returns number of chars written

int fputs(char *buf, FILE *fp)

Example: File Copy by Line
int main() {
 char buf[BUFLEN], inFile[BUFLEN], outFile[BUFLEN];
 FILE *in, *out;
 printf("Enter source filename: ");
 fgets(inFile,BUFLEN-1,stdin);
 inFile[strlen(inFile)-1] = '\0';
 // get outFile as well from user

 in = fopen(inFile, "r");
 out = fopen(outFile, "w");
 if ((in == NULL) || (out == NULL)) {
 printf("*** File open error\n");
 return;
 }
 /* NULL returned at EOF */
 while (fgets(buf, BUFLEN-1, in) != NULL) {
 fputs(buf, out);
 }
 fclose(in); fclose(out);
 return 0;
}

File Positioning
•  Each file has an associated file position
•  When a file is opened, the file position is set either

at the beginning or the end
SEEK_SET – beginning of file
SEEK_CUR – current file position
SEEK_END – end of file
int fseek(FILE *fp, long offset, int
whence)

void rewind(FILE *fp)
 rewind(fp) <==> fseek(fp, 0L,
SEEK_SET)

3/25/14	

8	

String I/O
•  Read and write data using a string as though it

were a stream.
•  The sprintf function writes output into a

character array (pointed to by its first argument)
instead of a stream.

•  A call that writes "9/20/2010" into date:
 sprintf(date, "%d/%d/%d", 9, 20, 2010);

•  sprintf adds a null character at the end of the
string.

•  It returns the number of characters stored (not
counting the null character).

String I/O
•  sscanf reads characters from a string.
•  An example that uses fgets to obtain a line of input,

then passes the line to sscanf for further processing:
 fgets(str, sizeof(str), stdin);
 /* reads a line of input */
 sscanf(str, "%d%d", &i, &j);
 /* extracts two integers */

•  sscanf returns the number of data items successfully
read and stored.

•  sscanf returns EOF if it reaches the end of the string
(marked by a null character) before finding the first
item.

String I/O
•  One advantage of using sscanf is that we can

examine an input line as many times as needed.
•  This makes it easier to recognize alternate input forms

and to recover from errors.
•  Consider the problem of reading a date that’s written

either in the form month/day/year or month-day-
year:

if (sscanf(str, "%d /%d /%d", &month, &day, &year) == 3)
 printf("Month: %d, day: %d, year: %d\n", month, day,

year);
else if (sscanf(str, "%d -%d -%d", &month, &day, &year) ==

3)
 printf("Month: %d, day: %d, year: %d\n", month, day,

year);
else
 printf("Date not in the proper form\n");

