
1	

Declarations

Based on slides from K. N. King

Bryn Mawr College
CS246 Programming Paradigm

Declaration Syntax
•  General form of a declaration:

 declaration-specifiers declarators ;
•  Declaration specifiers describe the properties of the

variables or functions being declared.
•  Declarators give their names and may provide

additional information about their properties.

Declaration Specifiers
•  Declaration specifiers fall into three categories:

o  Storage classes (at most one; if present, should come first)
•  auto, static, extern, and register.

o  Type qualifiers (zero or more)
o  Type specifiers

•  E.g., void, char, short, int, long, float, double,
signed

•  specifications of structures, unions, and enumerations.
struct point { int x, y; },
struct { int x, y; }, struct point.

•  typedef names
•  Type qualifiers and type specifiers should follow the storage

class

Declarators
•  Declarators include:

o  Identifiers (names of simple variables)
o  Identifiers followed by [] (array names)
o  Identifiers preceded by * (pointer names)
o  Identifiers followed by () (function names)

•  Declarators are separated by commas.
•  A declarator that represents a variable may be

followed by an initializer.

Declaration Examples
•  A declaration with a storage class and three declarators:

•  A declaration with a type qualifier and initializer but no

storage class:

Declaration Examples
•  A declaration with a storage class, a type qualifier, and

three type specifiers:

•  Function declarations may have a storage class, type

qualifiers, and type specifiers:

2	

Properties of Variables
•  Every variable in a C program has three properties:

o Storage duration determines when memory is set
aside for the variable and when that memory is
released

o Scope is the portion of the program text in which
the variable can be referenced.

o Linkage determines the extent to which a variable
can be shared.

Properties of Variables
•  The storage duration of a variable determines

when memory is set aside for the variable and
when that memory is released.
o Automatic storage duration: Memory for variable

is allocated when the surrounding block is executed
and deallocated when the block terminates.

o Static storage duration: Variable stays at the same
storage location as long as the program is running,
allowing it to retain its value indefinitely.

Properties of Variables
•  The scope of a variable is the portion of the

program text in which the variable can be
referenced.
o Block scope: Variable is visible from its point of

declaration to the end of the enclosing block.
o File scope: Variable is visible from its point of

declaration to the end of the enclosing file.

Properties of Variables
•  The linkage of a variable determines the extent to

which it can be shared.
o External linkage: Variable may be shared by

several (perhaps all) files in a program.
o  Internal linkage: Variable is restricted to a single

file but may be shared by the functions in that file.
o No linkage: Variable belongs to a single function

and can’t be shared at all.

Properties of Variables
•  The default storage duration, scope, and linkage of a

variable depend on where it’s declared:
o Variables declared inside a block (including a function

body) have
•  automatic storage duration,
•  block scope, and
•  no linkage.

o Variables declared outside any block, at the outermost
level of a program, have

•  static storage duration,
•  file scope, and
•  external linkage.

Properties of Variables
•  Example:

•  We can alter these properties by specifying an explicit
storage class: auto, static, extern, or register.

3	

The auto Storage Class
•  The auto storage class is legal only for variables

that belong to a block.
•  An auto variable has automatic storage duration,

block scope, and no linkage.
•  The auto storage class is almost never specified

explicitly.

The static Storage Class
•  The static storage class can be used with all

variables, regardless of where they’re declared.
o When used outside a block, static specifies that a

variable has internal linkage.
o When used inside a block, static changes the

variable’s storage duration from automatic to static.

The static Storage Class
•  When used outside a block, static hides a variable

within a file:
 static int i; /* no access to i in other files */

 void f1(void)
 {
 /* has access to i */
 }

 void f2(void)
 {
 /* has access to i */
 }

•  This use of static is helpful for implementing
information hiding.

The static Storage Class
•  A static variable declared within a block resides at

the same storage location throughout program
execution.

•  A static variable retains its value across the entire
run of the program.

•  Properties of static variables:
o A static variable is initialized only once, prior to

program execution.
o A static variable declared inside a function is shared

by all calls of the function, including recursive calls.
o A function may return a pointer to a static variable.

The static Storage Class
•  Declaring a local variable to be static allows a function to

retain information between calls.

void func() {
 static int x = 0;
 printf("%d\n", x);
 x = x + 1;
}

int main() {
 func(); // prints 0
 func(); // prints 1
 func(); // prints 2
 return 0;
}

The static Storage Class
•  More often, we’ll use static for reasons of

efficiency:
 char digit_to_hex_char(int digit)
 {
 static const char hex_chars[16] =
 "0123456789ABCDEF";

 return hex_chars[digit];
 }

•  Declaring hex_chars to be static saves time,
because static variables are initialized only once.

4	

The extern Storage Class
•  The extern storage class enables several source

files to share the same variable.
•  A variable declaration that uses extern doesn’t

cause memory to be allocated for the variable:
 extern int i; // not a definition of i.

•  A variable can have many declarations in a
program but should have only one definition.

The extern Storage Class
Exception:
•  An extern declaration that initializes a variable

serves as a definition of the variable.
•  For example, the declaration
 extern int i = 0;

 is effectively the same as
 int i = 0;

•  This rule prevents multiple extern declarations
from initializing a variable in different ways.

The extern Storage Class
•  Storage duration: always static
•  Inside a block – block scope; otherwise, file scope.
•  Linkage: if the variable was declared static earlier

in the file (outside of any function definition) – internal
linkage; otherwise, external linkage.

The register Storage Class
•  Using the register storage class in the

declaration of a variable asks the compiler to store
the variable in a register.

•  A register is a high-speed storage area located in a
computer’s CPU.

•  Specifying the storage class of a variable to be
register is a request, not a command.

•  The compiler is free to store a register variable
in memory if it chooses.

The register Storage Class
•  The register storage class is legal only for

variables declared in a block.
•  A register variable has the same storage

duration, scope, and linkage as an auto variable.
•  Since registers don’t have addresses, it’s illegal to

use the & operator to take the address of a
register variable.

•  This restriction applies even if the compiler has
elected to store the variable in memory.

The register Storage Class
•  register is best used for variables that are

accessed and/or updated frequently.
•  The loop control variable in a for statement is a

good candidate for register treatment:
 int sum_array(int a[], int n)
 {
 register int i;
 int sum = 0;

 for (i = 0; i < n; i++)
 sum += a[i];
 return sum;
 }

5	

The register Storage Class
•  register isn’t as popular as it once was.
•  Many of today’s compilers can determine

automatically which variables would benefit from
being kept in registers.

•  Still, using register provides useful
information that can help the compiler optimize the
performance of a program.

•  In particular, the compiler knows that a
register variable can’t have its address taken,
and therefore can’t be modified through a pointer.

The Storage Class of a Function
•  Function declarations (and definitions) may include

a storage class.
•  The only options are extern and static:

o extern specifies that the function has external
linkage, allowing it to be called from other files.

o static indicates internal linkage, limiting use of
the function’s name to the file in which it’s
defined.

•  If no storage class is specified, the function is
assumed to have external linkage.

The Storage Class of a Function
•  Examples:
 extern int f(int i);
 static int g(int i);
 int h(int i);

•  Using extern is unnecessary, but static has
benefits:
o Easier maintenance. A static function isn’t visible

outside the file in which its definition appears, so future
modifications to the function won’t affect other files.

o Reduced “name space pollution.” Names of static
functions don’t conflict with names used in other files.

The Storage Class of a Function
•  Function parameters have the same properties as
auto variables: automatic storage duration, block
scope, and no linkage.

•  The only storage class that can be specified for
parameters is register.

Summary
•  Of the four storage classes, the most important are
static and extern.

•  auto has no effect, and modern compilers have
made register less important.

Type Qualifiers
•  const is used to declare “read-only” objects.
•  Examples:
 const int n = 10;
 const int tax_brackets[] =
 {750, 2250, 3750, 5250, 7000};

6	

Declarators
•  Identifiers (names of simple variables)

o Simplest case: a declarator is just an identifier
int i;

•  Identifiers followed by [] (array names)
•  Identifiers preceded by * (pointer names)

int *p;
•  Identifiers followed by () (function names)

Deciphering Complex Declarations
•  But what about declarators like the one in the

following declaration?
 int *(*x[10])(void);

•  It’s not obvious whether x is a pointer, an array, or
a function.

•  Rules for understanding declarations:
o Always read declarators from the inside out.

Locate the identifier that’s being declared, and start
deciphering the declaration from there.

o When there’s a choice, always favor [] and ()
over *. Parentheses can be used to override the
normal priority of [] and () over *.

•  Examples:
int *ap[10]; //ap is an array of pointers.
float *fp(float);

 //fp is a function that returns a pointer.

Deciphering Complex Declarations
•  Example:
 void (*pf)(int);

o Since *pf is enclosed in parentheses, pf must be a
pointer.

o But (*pf) is followed by (int), so pf must
point to a function with an int argument.

o The word void represents the return type of this
function.

Deciphering Complex Declarations

•  Example:
•  int *(*x[10])(void);

Deciphering Complex Declarations
•  Certain things can’t be declared in C.
•  Functions can’t return arrays:
 int f(int)[]; /*** WRONG ***/

•  Functions can’t return functions:
 int g(int)(int); /*** WRONG ***/

•  Arrays of functions aren’t possible, either:
 int a[10](int); /*** WRONG ***/

•  In each case, pointers can be used to get the desired
effect.

•  For example, a function can’t return an array, but it can
return a pointer to an array.

Deciphering Complex Declarations

7	

Initializers
•  For convenience, C allows us to specify initial

values for variables as we’re declaring them.
•  To initialize a variable, we write the = symbol after

its declarator, then follow that with an initializer.

Initializers
•  The initializer for a simple variable is an

expression of the same type as the variable:
 int i = 5 / 2; /* i is initially 2 */

•  If the types don’t match, C converts the initializer
using the same rules as for assignment:

 int j = 5.5; /* converted to 5 */

•  The initializer for a pointer variable must be an
expression of the same type or of type void *:

 int *p = &i;

Initializers
•  The initializer for an array, structure, or union is

usually a series of values enclosed in braces:
 int a[5] = {1, 2, 3, 4, 5};

•  An initializer for a variable with static storage
duration must be constant:

 #define FIRST 1
 #define LAST 100

 static int i = LAST - FIRST + 1;

•  If LAST and FIRST had been variables, the
initializer would be illegal.

Initializers
•  If a variable has automatic storage duration, its

initializer need not be constant:
 int f(int n){
 int last = n - 1;
 …
 }

•  A brace-enclosed initializer for an array, structure, or
union must contain only constant expressions:

 #define N 2

 int powers[5] =
 {1, N, N * N, N * N * N, N * N * N * N};

 If N were a variable, the initializer would be illegal.

Initializers
•  The initializer for an automatic structure or union

can be another structure or union:
 void g(struct part part1)
 {
 struct part part2 = part1;
 …
 }

•  The initializer doesn’t have to be a variable or
parameter name, although it does need to be an
expression of the proper type.

Uninitialized Variables
•  The initial value of a variable depends on its

storage duration:
o Variables with automatic storage duration have no

default initial value.
o Variables with static storage duration have the value

zero by default.
•  A static variable is correctly initialized based on its

type, not simply set to zero bits.
•  It’s better to provide initializers for static variables

rather than rely on the fact that they’re guaranteed
to be zero.

