
CS246 Spring14 Programming Paradigm Notes on GDB

1 What is GDB?

Gdb (GNU Debugger) is a debugger for C (and C++). It allows you to inspect what the program is
doing at a certain point during execution and print out the values of certain variables at that point, or
step through the program one line at a time and print out the values of each variable after executing
each line. It uses a command line interface.

Online manual can be found here: https://sourceware.org/gdb/current/onlinedocs/gdb/

2 Using GDB

2.1 Compiling a Program

The syntax for compiling a program:
gcc [flags] <source files> -o <output file>
For example,
gcc -o hw ./hw1.c

To prepare your program for debugging with gdb, you must compile it with the -g flag,
gcc -g -o hw ./hw1.c

2.2 Running Your Program

To execute your C program,
./<output program name>

2.3 Starting Up GDB

• To start gdb, just type “gdb” or “gdb executable ” at the command line prompt. Gdb will give
you a prompt that looks like this: (gdb) or (db).

• To exit the program just type quit or q at the (gdb) prompt.

• If you didnt specify a program to debug, youll have to load it in now:
(gdb) file hw

Here, hw is your executable file name.

2.4 Commands

• (gdb) help [command]

Use the “help” command with or without an argument if youre ever confused about a command
or just want more information.

• (gdb) list linenumber

or simply
(gdb) l linenumber

lists source code with line numbers.

• (gdb) run

run starts the program running under gdb. You can give command line arguments to your pro-
gram on the gdb command line the same way you would on the unix command line, except that
you are saying run instead of the program name. You can even do input/output redirection:

1 February 11, 2014



CS246 Spring14 Programming Paradigm Notes on GDB

(gdb) run < Input.txt

• (gdb) break hw1.c:8

or simply
(gdb) b hw1.c:8

sets a breakpoint at line 8, of hw1.c. Now, if the program ever reaches that location when running,
the program will pause and prompt you for another command. You can set as many breakpoints
as you want, and the program should stop execution if it reaches any of them.

Once youve set a breakpoint, you can try using the run command again. This time, it should stop
where you tell it to (unless a fatal error occurs before reaching that point).

• (gdb) continue

or
(gdb) c

proceeds onto the next breakpoint.

• (gdb) step

or
(gdb) s

single-steps (executes just the next line of code) which gives you fine-grained control over how the
program proceeds.

• (gdb) next

or
(gdb) n

is similar to step, except that if the line about to be executed is a function call, then that function
call will be completely executed before execution stops again, whereas with step execution will
stop at the first line of the function that is called. That is, next treats a sub-routine as one
instruction.

• (gdb) print expression

or
(gdb) p expression

prints out the value of the expression.

• (gdb) watch expression

tracks the value of specified expression at every step. Whenever the expression’s value is modified,
the program will interrupt and print out the old and new values.

• (gdb) info breakpoints

shows information about all declared breakpoints.

• (gdb) delete

deletes all declared breakpoints.

• (gdb) delete number

deletes breakpoint numbered number.

2 February 11, 2014


