
CS246 lab Notes #2 gdb, Pipes, and Redirection
• Compiling your “c” programs

o “g++ –g –Wall –o <output file> <source file>
o Beware of the following command!!!

§ g++ hw1.cpp –o hw1.cpp
• Executing your “c” programs

o ./<output program name>
o or just the program name, if current directory is in the search path. The

course config file should set this up for your account
• gdb – the Gnu DeBugger

o gdb <executable file> – start gdb on a given program (note the executable
must be compiled with the –g flag)

o run (short r) – start program execution
o list (short l) – list source code with line numbers
o break (short b) linenumber/functionname – set a break point at the

specified line number or function
o continue (short c) – continue to the next break point
o step (short s) – execute next program line, step INTO functions
o next (short n) – execute next program line, step OVER functions
o print (short p) varname – print the value of the specified variable
o watch varname – track the value of specified variable at every step
o quit (short q) – quits gdb
o Refer to your reference card for more advanced options of gdb
o You can run gdb inside Emacs with command M-x gdb

• gdb exercise (Exercise 1)
o make a copy of

/rd/cs246s2016/shared/lab02/lab02.cpp
o compile lab02.cpp, say you named your executable

lab02
o gdb lab02
o l
o b 15
o run
o next
o step through the loops and print out any

variables of interest
o use continue to skip to the next outer loop

iteration
o q when finished

• Streams revisited
o The file pointer argument to the above functions is considered a stream
o Also, we've seen three "standard" streams before

§ stdin
o Standard Input
o External input to a function
o What cin takes by default

§ stdout
o Standard output
o Normal output from a function
o What cout uses by default

§ stderr
o Standard error
o A different output from a function
o Separate from stdout
o What cerr uses by default

• Piping
o UNIX has the capability to put a program's output somewhere other than

the terminal, such as feed it into another program.
§ Basically, UNIX forms a link between the stdout of one program

and the stdin of another program.
o Example: suppose you have a file hw1.cpp in your directory. Type cat

hw1.cpp | more
§ Remember that cat displays a file to stdout without pause
§ cat with no arguments will take input from stdin and display it to

stdout
§ cat with multiple arguments (filenames) will concatenate all files

to stdout
o This puts the output of cat hw1.cpp into the functionality of the more

program.
o The advantages of piping are more pronounced when you use some of the

more specialized UNIX utilities.
o Note: you may pipe as many times as you want. A chain of programs

piping to each other is called a pipeline.
§ Try: cat | cat | cat | cat | cat
§ What happens?

o pipe both stderr and stdout into the next program's stdin. (Different for
csh/tcsh vs bash

§ csh/tcsh: |&
§ bash: must talk about redirection first

• Redirection
o Think about the beginning and end of a pipeline. The stdin is the user

input to the terminal, and the stdout is what is printed to the terminal.
o But what if you want the input from another source, like a file?
o Remember that stdin, stdout and stderr are just special files setup by the

system with specific names. Redirection allows you to use a file in place
of any of the three stream locations.

o wc
§ Counts characters, lines, words in a file
§ By default displays all; wc is equivalent to wc –clw
§ -c – Characters
§ -l – Lines
§ -w – Words

o stdin from file
§ Use < after the command to use the file following it as the input

file.
§ Example: try the following three operations.

o wc hw1.cpp
o wc < hw1.cpp
o cat hw1.cpp | wc

o stdout to file
§ Use > after the command to use the file following it as the output

file.
§ Example:

o ls –l > ls.txt
§ That's how we got the long file from the first recitation

o stderr to file (csh/tcsh can not do this)
§ In general, stdout is considered the “first” output stream and stderr

the “second”, and thus they are represented by 1 and 2 respectively
§ Example:

o bash: cat blah 2> error.txt
o stdout to stderr (csh/tcsh can not do this)

§ stdout of a program to is written combined to its stderr
§ Example (only works in bash)

o cat blah 1>&2
o cat blah 2> error.txt 1>&2
o can you pipe this?

o stderr to stdout (csh/tcsh can not do this)
§ stderr of a program to is written combined to its stdout
§ Example (only works in bash)

o cat blah 2>&1
o cat blah 2>&1 | wc –l
o cat blah >error.txt 2>&1

o both stdout and stderr to file
§ Example

o bash and csh/tcsh: cat blah >& error.txt
o bash: mv blah gunk 1>&2 2> error.txt

o How to suppress messages:
§ Unix has a file called /dev/null
§ It is always empty, even if you redirect to it
§ Thus to suppress error messages in bash, just do <command>

<args> 2> /dev/null
§ Or to suppress all output (both bash and csh/tcsh): <command>

<args> >& /dev/null

• Exercise 2:
o Write a C++ program that prints something to stdout and stderr.
o Redirect program out:

§ stdout pipe to wc -l
§ stdout only to file
§ stderr only to file
§ stderr to stdout then pipe to wc -l
§ stderr to stdout then to file
§ stdout to stderr then to file
§ all output to file

