CS246 lab Notes #2 gdb, Pipes, and Redirection
¢ Compiling your “c” programs
o “g++—-g—Wall —o <output file> <source file>
o Beware of the following command!!!
= g++hwl.cpp—-ohwl.cpp
* Executing your “c” programs
o ./<output program name>
o or just the program name, if current directory is in the search path. The
course config file should set this up for your account
* gdb — the Gnu DeBugger
o gdb <executable file> — start gdb on a given program (note the executable
must be compiled with the —g flag)
o run (short r) — start program execution
list (short 1) — list source code with line numbers
break (short b) linenumber/functionname — set a break point at the
specified line number or function
continue (short ¢) — continue to the next break point
step (short s) — execute next program line, step INTO functions
next (short n) — execute next program line, step OVER functions
print (short p) varname — print the value of the specified variable
watch varname — track the value of specified variable at every step
quit (short q) — quits gdb
Refer to your reference card for more advanced options of gdb

o You can run gdb inside Emacs with command M-x gdb
* gdb exercise (Exercise 1)

o make a copy of
/rd/cs246s2016/shared/lab02/1ab02.cpp
compile lab@2.cpp, say you named your executable
lab02
gdb lab@2
1
b 15
run
next
step through the loops and print out any
variables of interest

o use continue to skip to the next outer loop

iteration

o g when finished
* Streams revisited

o The file pointer argument to the above functions is considered a stream

o Also, we've seen three "standard" streams before

= stdin
o Standard Input
o External input to a function
o What cin takes by default

o O

O O O O O O O

O

O O O O O O

Piping
o

= stdout
o Standard output
o Normal output from a function
o What cout uses by default
= stderr
o Standard error
o A different output from a function
o Separate from stdout
o What cerr uses by default

UNIX has the capability to put a program's output somewhere other than
the terminal, such as feed it into another program.
= Basically, UNIX forms a link between the stdout of one program
and the stdin of another program.
Example: suppose you have a file hw1.cpp in your directory. Type cat
hw1.cpp | more
= Remember that cat displays a file to stdout without pause
= cat with no arguments will take input from stdin and display it to
stdout
= cat with multiple arguments (filenames) will concatenate all files
to stdout
This puts the output of cat hwl.cpp into the functionality of the more
program.
The advantages of piping are more pronounced when you use some of the
more specialized UNIX utilities.
Note: you may pipe as many times as you want. A chain of programs
piping to each other is called a pipeline.
= Try:catlcatlcatlcatlcat
= What happens?
pipe both stderr and stdout into the next program's stdin. (Different for
csh/tcsh vs bash
= csh/tesh: &
= bash: must talk about redirection first

Redirection

o

Think about the beginning and end of a pipeline. The stdin is the user
input to the terminal, and the stdout is what is printed to the terminal.
But what if you want the input from another source, like a file?
Remember that stdin, stdout and stderr are just special files setup by the
system with specific names. Redirection allows you to use a file in place
of any of the three stream locations.
wC

= Counts characters, lines, words in a file

= By default displays all; wc is equivalent to wc —clw

= C — Characters

=] — Lines

= W — Words

stdin from file
= Use < after the command to use the file following it as the input
file.
= Example: try the following three operations.
o wchwl.cpp
o wc<hwl.cpp
o cathwl.cpplwc
stdout to file
= Use > after the command to use the file following it as the output
file.
= Example:
o Is—I>ls.txt
= That's how we got the long file from the first recitation
stderr to file (csh/tcsh can not do this)
= In general, stdout is considered the “first” output stream and stderr
the “second”, and thus they are represented by 1 and 2 respectively
= Example:
o bash: cat blah 2> error.txt
stdout to stderr (csh/tcsh can not do this)
= stdout of a program to is written combined to its stderr
= Example (only works in bash)
o catblah 1>&2
o cat blah 2> error.txt 1>&2
o can you pipe this?
stderr to stdout (csh/tcsh can not do this)
= stderr of a program to is written combined to its stdout
= Example (only works in bash)
o catblah 2>&1
o catblah 2>&1 | we -1
o cat blah >error.txt 2>&1
both stdout and stderr to file
= Example
o bash and csh/tesh: cat blah >& error.txt
o bash: mv blah gunk 1>&2 2> error.txt
How to suppress messages:
= Unix has a file called /dev/null
= [tis always empty, even if you redirect to it
= Thus to suppress error messages in bash, just do <command>
<args> 2> /dev/null
= Or to suppress all output (both bash and csh/tcsh): <command>
<args>>& /dev/null

* Exercise 2:
o Write a C++ program that prints something to stdout and stderr.
o Redirect program out:
= stdout pipe to wc -1
= stdout only to file
= stderr only to file
= stderr to stdout then pipe to wc -1
= stderr to stdout then to file
= stdout to stderr then to file
= all output to file

