CS246 lab Notes #3 prototypes, header files, preprocessor directives, cout, and thg
Tue, Feb. 9
Instructor: David Cooper

* Make a lab03 directory in your course directory
* Initialize a repository and clone it to your home cs246 directory
* Copy the “hello.h” file from the /rd/cs246s2016/shared/labO3/helloLanguages
directory into your home cs246/1ab03 directory.
* Add and commit hello.h (in ¢s246/1ab03)
* Prototypes reviewed
o Recall a function prototype is the function declaration statement without
the actual code for the function.
o Prototypes tell the compiler that a function exists but will be defined later.
o Why do we have prototypes?
= g++1isa “one-pass compiler”
= Jtdoesn’t go back and figure out what to do with a function they
didn’t know would exist later
= Thus functions would have to be written in a dependency based
order
= Prototypes are used to tell the compiler that a function WILL exist,
but it hasn’t been defined yet.

* Preprocessor
o What is the preprocessor?
= There are advantages to certain things being done before compiling
begins. For example, giving the compiler prototypes for functions
like “hello” so that assembly can be written properly.
= The preprocessor does many convenience jobs, rewrites the source
file without doing any actual compiling.
o #include
= Adds library functions to do specific tasks
= #include <iostream>
= This adds the standard output/input streams to the compiled
program
o cout, cerr, cin, etc.
= #include <string>
o for std::string.
= #include <cmath>
o Has a lot of math functions like trigonometry, exponents,
etc.
o All the math functions are listed at
http://www.cplusplus.com/reference/cmath/

Page 1 of 4

o {#tdefine

Syntax: #define <replace-ee> <replace-or>
Example:
o #define BUFFERSIZE 100
Then you might have code like:
int bufferBUFFERSIZE]
for(i = 0; i < BUFFERSIZE; i++)
This makes code more readable, and easier to modify
because you change the BUFFERSIZE in one place.
#define vs. const
o #define is a preprocessor operation, changes text, but is not
part of the actual compiler
o Affects all subsequent code, regardless of scope
o #define can change more than just variables, can represent
functions, etc. but this is not recommended.

o O O O

o #if, #ifdef, #ifndef, #else, #elif, #endif

Header files
We’ve seen header files be used, but not actually written one.

Header files contain function prototypes, #includes, #defines, global
variables, and other things such as structs, enums, and typedefs.

The reason for a header file is to make multiple source file
interdependence much simpler.

When dealing with multiple header files, you may get #include loops.
To prevent this, use the following convention (illustrated below through
example)

Add this to the file hello.h

@)
@)

The C preprocessor contains a simplified conditional system.
Works very similarly to “if-then” statements, but more efficient in
the compiled code because the code removed never even gets
compiled.
Usage
o #if X ==2 (if X is #defined to be 2)
#ifdef X (if X is #defined at all)
#ifndef X (if X is not #defined)
#else — as expected
#elif X == 2— “else if X is #defined to be 2”
o #endif — ends the if block
Often used for cross-platform code
o #ifdef WINDOWS, #ifdef UNIX
o #ifdef LITTLE_ENDIAN
Dependency checking
o #ifdef is very useful in header files...

0O O O O

#ifndef HELLO_H
#define HELLO_H
// header file stuff
#endif

Page 2 of 4

o Thus if the file is included more than once you cannot have a loop (all the
code in the header will be erased by the preprocessor)
* Multiple source files
o If you have split your source code into more than one file, you must list all
relevant files when compiling, for instance:
g++ —g filel.o file2.cpp —o output
o Try the following exercise:

= Declare a function mystery, that takes a double from the console
input (keyboard) and does a mystery to it, then returns the result of
the mystery as a double.

o put the function in a mystery. h header file with
preprocessor code so that it is only included once.

= write a Lab@3. cpp which uses the two functions declared in
hello.h and mystery. h, for example, say hello to the user,
and ask for input of a double from the user and print the result of
the mystery function.

= compile Lab@3. cpp, but do not link it (since the functions are
not yet defined; they are only declared)

* You should now have a Lab@3. o file

* add and commit your files to your repository.

* write a file <username>_twoFunctions. cpp which
includes "hello.h" and "mystery.h" and contains two
functions, one that defines/implements the hello function from
hello. h, and the other, called mystery from mystery. h takes
a double from the console input (keyboard) and does a mystery to
it, then returns the result of the mystery as a double.

= Have your partner write a second file
<partnerusername>_twoFunctions. cpp which defines
hello and mystery function each in a different way than the original
functions.

= include all header files properly and compile 2 different programs:

o <username>_1lab03, which uses Llab03.0 and
<username>_twoFunctions.cpp

o <partnerusername>_1lab03, which uses lab@3.0
and <partnerusername>_twoFunctions.cpp

= test each program and see how they differ.

= Add, commit and push your code back to your course directory
repository.

* cout and <iomanip>
o You can print anything with cout
o Using setbase, you can change to convert decimal values to output
decimal, hexadecimal and octal.
o Reference sheet is page 351 in Gregoire, Professional C++, 3™ Ed.

o Special manipulators

Page 3 of 4

= boolalpha (noboolalpha) - whether or not booleans should be
true/false vs. 1/0

= hex, oct, dec -base manipulators

= setprecision(x) - x is the number of decimal places displayed

= setw(X) - x is the minimum field width for numeric data

= setfill(x) - x is the fill character to pad a number

= Escape characters:

* To print non-standard characters, we use the special
backslash character \' to represent when a character is non
standard.

* \n-—newline

* \r — carriage return. Equivalent to \n, however there is a
difference on Unix Systems.

* \a-bell

* \b- backspace

* \t- horizontal tab

* \v - vertical tab

* \\- backslash

* \? — question mark

* \'—single quote

* \"—double quote

* \000 — octal number

* \xhh — hexadecimal number

* Note: using streams, the % symbol does not need to be
escaped, unlike printf.

thg - TortoiseHg

@)
@)

O O O O O O O

this is a GUI to interact with mercurial repositories.
run thg using the command:
* thg
a gui will show up
File... Open Repository (or Ctl-O)
Select your local repository for lab 03
do you see different revisions
select each one and see what changes.
explore the gui and try to learn what the buttons do.
http://tortoisehg.readthedocs.org/en/latest/quick .html

Page 4 of 4

