
 Page 1 of 4

CS246 lab Notes #3 prototypes, header files, preprocessor directives, cout, and thg
Tue, Feb. 9
Instructor: David Cooper

• Make a lab03 directory in your course directory
• Initialize a repository and clone it to your home cs246 directory
• Copy the “hello.h” file from the /rd/cs246s2016/shared/lab03/helloLanguages

directory into your home cs246/lab03 directory.
• Add and commit hello.h (in cs246/lab03)
• Prototypes reviewed

o Recall a function prototype is the function declaration statement without
the actual code for the function.

o Prototypes tell the compiler that a function exists but will be defined later.
o Why do we have prototypes?

§ g++ is a “one-pass compiler”
§ It doesn’t go back and figure out what to do with a function they

didn’t know would exist later
§ Thus functions would have to be written in a dependency based

order
§ Prototypes are used to tell the compiler that a function WILL exist,

but it hasn’t been defined yet.
• Preprocessor

o What is the preprocessor?
§ There are advantages to certain things being done before compiling

begins. For example, giving the compiler prototypes for functions
like “hello” so that assembly can be written properly.

§ The preprocessor does many convenience jobs, rewrites the source
file without doing any actual compiling.

o #include
§ Adds library functions to do specific tasks
§ #include <iostream>
§ This adds the standard output/input streams to the compiled

program
o cout, cerr, cin, etc.

§ #include <string>
o for std::string.

§ #include <cmath>
o Has a lot of math functions like trigonometry, exponents,

etc.
o All the math functions are listed at

http://www.cplusplus.com/reference/cmath/

 Page 2 of 4

o #define
§ Syntax: #define <replace-ee> <replace-or>
§ Example:

o #define BUFFERSIZE 100
o Then you might have code like:
o int buffer[BUFFERSIZE]
o for(i = 0; i < BUFFERSIZE; i++)
o This makes code more readable, and easier to modify

because you change the BUFFERSIZE in one place.
§ #define vs. const

o #define is a preprocessor operation, changes text, but is not
part of the actual compiler

o Affects all subsequent code, regardless of scope
o #define can change more than just variables, can represent

functions, etc. but this is not recommended.
o #if, #ifdef, #ifndef, #else, #elif, #endif

§ The C preprocessor contains a simplified conditional system.
§ Works very similarly to “if-then” statements, but more efficient in

the compiled code because the code removed never even gets
compiled.

§ Usage
o #if X == 2 (if X is #defined to be 2)
o #ifdef X (if X is #defined at all)
o #ifndef X (if X is not #defined)
o #else – as expected
o #elif X == 2– “else if X is #defined to be 2”
o #endif – ends the if block

§ Often used for cross-platform code
o #ifdef WINDOWS, #ifdef UNIX
o #ifdef LITTLE_ENDIAN

§ Dependency checking
o #ifdef is very useful in header files…

• Header files
o We’ve seen header files be used, but not actually written one.
o Header files contain function prototypes, #includes, #defines, global

variables, and other things such as structs, enums, and typedefs.
o The reason for a header file is to make multiple source file

interdependence much simpler.
o When dealing with multiple header files, you may get #include loops.
o To prevent this, use the following convention (illustrated below through

example)
o Add this to the file hello.h

§ #ifndef HELLO_H
§ #define HELLO_H
§ // header file stuff
§ #endif

 Page 3 of 4

o Thus if the file is included more than once you cannot have a loop (all the
code in the header will be erased by the preprocessor)

• Multiple source files
o If you have split your source code into more than one file, you must list all

relevant files when compiling, for instance:
g++ –g file1.o file2.cpp –o output

o Try the following exercise:
§ Declare a function mystery, that takes a double from the console

input (keyboard) and does a mystery to it, then returns the result of
the mystery as a double.

o put the function in a mystery.h header file with
preprocessor code so that it is only included once.

§ write a lab03.cpp which uses the two functions declared in
hello.h and mystery.h, for example, say hello to the user,
and ask for input of a double from the user and print the result of
the mystery function.

§ compile lab03.cpp, but do not link it (since the functions are
not yet defined; they are only declared)

§ You should now have a lab03.o file
§ add and commit your files to your repository.
§ write a file <username>_twoFunctions.cpp which

includes "hello.h" and "mystery.h" and contains two
functions, one that defines/implements the hello function from
hello.h, and the other, called mystery from mystery.h takes
a double from the console input (keyboard) and does a mystery to
it, then returns the result of the mystery as a double.

§ Have your partner write a second file
<partnerusername>_twoFunctions.cpp which defines
hello and mystery function each in a different way than the original
functions.

§ include all header files properly and compile 2 different programs:
o <username>_lab03, which uses lab03.o and

<username>_twoFunctions.cpp
o <partnerusername>_lab03, which uses lab03.o

and <partnerusername>_twoFunctions.cpp
§ test each program and see how they differ.
§ Add, commit and push your code back to your course directory

repository.
• cout and <iomanip>

o You can print anything with cout
o Using setbase, you can change to convert decimal values to output

decimal, hexadecimal and octal.
o Reference sheet is page 351 in Gregoire, Professional C++, 3rd Ed.

o Special manipulators

 Page 4 of 4

§ boolalpha (noboolalpha) - whether or not booleans should be
true/false vs. 1/0

§ hex, oct, dec -base manipulators
§ setprecision(x) - x is the number of decimal places displayed
§ setw(x) - x is the minimum field width for numeric data
§ setfill(x) - x is the fill character to pad a number
§ Escape characters:

• To print non-standard characters, we use the special
backslash character '\' to represent when a character is non
standard.

• \n – newline
• \r – carriage return. Equivalent to \n, however there is a

difference on Unix Systems.
• \a – bell
• \b – backspace
• \t – horizontal tab
• \v – vertical tab
• \\ - backslash
• \? – question mark
• \' – single quote
• \" – double quote
• \000 – octal number
• \xhh – hexadecimal number
• Note: using streams, the % symbol does not need to be

escaped, unlike printf.
• thg - TortoiseHg

o this is a GUI to interact with mercurial repositories.
o run thg using the command:

§ thg
o a gui will show up
o File... Open Repository (or Ctl-O)
o Select your local repository for lab 03
o do you see different revisions
o select each one and see what changes.
o explore the gui and try to learn what the buttons do.
o http://tortoisehg.readthedocs.org/en/latest/quick.html

