
CS246 lab Notes #7, preprocessor directives

• Prototypes reviewed

o Recall a function prototype is the function declaration statement without
the actual code for the function.

o Prototypes tell the compiler that a function exists but will be defined later.
o Why do we have prototypes?

§ gcc is a “one-pass compiler”
§ It doesn’t go back and figure out what to do with a function they

didn’t know would exist later
§ Thus functions would have to be written in a dependency based

order
§ Prototypes are used to tell the compiler that a function WILL exist,

but it hasn’t been defined yet.
• Preprocessor

o What is the preprocessor?
§ There are advantages to certain things being done before compiling

begins. For example, giving the compiler prototypes for functions like
“printf” so that assembly can be written properly.

§ The preprocessor does many convenience jobs, rewrites the source file
without doing any actual compiling.

o #include
§ Adds library functions to do specific tasks

o #define
§ Syntax: #define <replace-ee> <replace-or>
§ Example:

o #define BUFFERSIZE 100
o Then you might have code like:
o int buffer[BUFFERSIZE]
o for(i = 0; i < BUFFERSIZE; i++)
o This makes code more readable, and easier to modify

because you change the BUFFERSIZE in one place.
§ Example:

o #define TEST_EXISTS
o then you could have code
o #ifdef TEST_EXISTS
o …
o #endif

§ #define vs. const
o #define is a preprocessor operation, changes text, but is not part

of the actual compiler
o Affects all subsequent code, regardless of scope
o #define can change more than just variables, can represent

functions, etc. but this is not recommended.

o #if, #ifdef, #ifndef, #else, #elif, #endif
§ The C preprocessor contains a simplified conditional system.
§ Works very similarly to “if-then” statements, but more efficient in the

compiled code because the code removed never even gets compiled.
§ Usage

o #if X == 2 (if X is #defined to be 2)
o #ifdef X (if X is #defined at all)
o #ifndef X (if X is not #defined)
o #else – as expected
o #elif X == 2– “else if X is #defined to be 2”
o #endif – ends the if block

§ Often used for cross-platform code
o #ifdef WINDOWS, #ifdef UNIX
o #ifdef LITTLE_ENDIAN

§ Dependency checking
o #ifdef is very useful in header files…

• gcc can define preprocessor variables
o The	
 –Dmacro[=def]	
 flag	
 of	
 g++	
 	

§ g++	
 –DTEST	
 lab07.cpp	
 –o	
 lab07	

o #define	
 TEST	
 (without	
 putting	
 it	
 in	
 code)	

§ g++	
 –DTEST=1	
 lab07.cpp	
 –o	
 lab07	

o #define	
 TEST	
 1	
 (without	
 putting	
 it	
 in	

code)	

§ g++	
 –DTEST=0	
 lab07.cpp	
 –o	
 lab07	
 	

o #define	
 TEST	
 0	
 (without	
 putting	
 it	
 in	

code)	

• 	

• 	

• Exercise:	
 write	
 a	
 program	
 that	
 has	
 4	
 different	
 function	

definitions	
 that	
 print	
 different	
 lines	
 to	
 the	
 console	
 based	

on	
 conditional	
 compilation,	
 and	
 one	
 main	
 function	
 that	

calls	
 the	
 defined	
 function.	
 	

• Create	
 a	
 makefile	
 that	
 compiles	
 each	
 version	
 separately	

using	
 the	
 –D	
 option	
 and	
 runs	
 each	
 of	
 the	
 programs.	

