
1/27/16	

1	

+

Java vs. C++

Part 2

+
Language Goals

n  Consistency

n  every file is a class

n  one source file name

n  one object file name

n  one library file name

n  every class is descended
from Object

n  Programs are "safe"

n  Specificity

n  every file type has a specific
purpose

n  every programming
construct has a specific
purpose

n  Abstraction at the level you
want.

n  Programmer has ultimate
control over her program.

Java C++

+
Primitive types

n  boolean – true, false

n  not numeric

n  char - 2 bytes (numeric)

n  all numeric types are signed

n  bool – true or false
n  numeric

n  char – 1 byte (numeric integer)

n  numeric types can have
unsigned versions

n  integer type modifiers
n  long
n  short
n  signed
n  unsigned

Java C++

+
Variables

n  All primitives are values

n  All objects are references

n  There are no pointers

n  all variables are either

n  values

n  int x;

n  references

n  float &y;

n  pointers

n  char* z;

Java C++

+
Functions

n  void primitive(int x) {
// the argument passed to
// primitive is copied to
// the stack variable x
}

n  void object(Object y){
// y is a reference to
// the argument passed to
// to the method object

n  void anyFunction(type x) {
// the argument passed to
// anyFunction is copied to
// the stack variable x
}

n  void anyFunction(type &y){
// y is a reference to
// the argument passed to
// to anyFunction

Java C++

+
Variables

n  All primitives are values

n  All objects are references

n  There are no pointers

n  all variables are either

n  values

n  int x;

n  references

n  float &y;

n  pointers

n  char* z;

Java C++

1/27/16	

2	

+
So what is a pointer anyway?

n  A pointer is the numeric value that represents the physical
address (hopefully) in the program's heap or stack memory.

n  For now, the important thing to consider is that pointers have
a numeric integer value.

+
Arrays

n  int[] x = new int[5];

n  float[] y = {1.0f,2.0f,3.0f};

n  char[] z = {'h','e','l','l','o'};

n  int x[5];
for (int i = 0; i < 5; ++i) {
 x[i] = 0;
}

n  float y[] = {1.0,2.0,3.0};

n  char [] z = {'h','e','l','l','o'};

n  char z2[] = {'h','e','l','l','o','\0'};

Java C++

+
Boolean expressions

n  booleans are NOT NUMERIC!

n  so boolean expressions
must evaluate to either true
or false

n  bools are numeric
n  so all numeric expressions

can be treated as boolean
expressions

n  This means that any of the
following CAN be used as a
boolean expression:
n  a numeric literal, constant,

variable, operation, or
function

n  a pointer, or a function
returning a pointer

Java C++

+
Boolean expressions

n  booleans are NOT NUMERIC!

n  so boolean expressions
must evaluate to either true
or false

n  bools are numeric

n  so all numeric expressions
can be treated as boolean
expressions

n  This means that any of the
following CAN be used as a
boolean expression:

n  a numeric literal, constant,
variable, or function

n  a pointer, or a function
returning a pointer

Java C++

However, just because the compiler
will let you, doesn't mean you
should!

+
Operators

n  Operators are primitive
functions that cannot be
changed.

n  Arithmetic operators only
work on numeric types.

n  Boolean operators only work
on boolean types

n  concatenating Strings uses the
+ operator.

n  Operators are, unary, binary,
or ternary functions that can
be overloaded to work with
new types.

n  Arithmetic operators work the
same as in java

n  Boolean operators work on
numeric types

n  the + operator works to
concatenate std::strings, but
not char* (c style) strings.

Java C++

+
Non-primitive Types

n  Everything is a Class in java

n  However, there is an Enum
Type class that uses the
keyword enum to define
ordered constant values with
names.

n  c++ has c types in addition to
classes

n  enum (similar to java enum)

n  struct (think of the members
part of the class without the
functions)

n  union (a way to pack data in
multiple formats using the
same type)

n  c++ also has classes

Java C++

1/27/16	

3	

+
Enum

public enum ThreatLevel {

LOW, GUARDED, ELEVATED,
HIGH, SEVERE }

enum ThreatLevel {
LOW, GUARDED=3,
ELEVATED, HIGH=10,
SEVERE };

not strongly typed, just treated
as integers for strongly typed
enum use

enum class ThreatLevelStrong {
LOW, GUARDED=3,
ELEVATED, HIGH=10,
SEVERE };

Java C++

+
Struct (meant to structure data)

class MyStruct {
 public int x;
 public int y;

 public static void
main(String[] args) {

 MyStruct js =
 new MyStruct();
 // these have already been
 // initialized to 0
 js.x = 10;
 js.y = 10;
 }
}

struct MyStruct {
 int x;
 int y;
};

MyStruct cs;
// these must be initialized
cs.x = 10;
cs.y = 10;

Java C++

+
Classes

class MyClass {
 private int x;

 public void setX(int x) {
 this.x = x;
 }

}

class MyClass {
 int x;

public:
 void setX(int val);

};

void MyClass::setX(int val){
 x = val;
}

Java C++

+
Strings

Java C++

+
C-Style Strings

n  char* x = "hello";

+
C-Style Strings

n  char* x = "hello";

Index:
0
1
2
3
4
5
6

1/27/16	

4	

+
Streams

n  Input

n  System.in – the stream

n  Scanner =
 new Scanner(System.in);

n  (must use exceptions)

n  Output

n  System.out – the stream

n  System.err – the stream

n  Input
n  cin – the stream
n  >> – the operator

n  works on all primitive types
n  default delimiter is

whitespace

n  Output
n  cout – the stream
n  cerr – the stream
n  << – the operator

n  works on all primitive types

Java C++

+
cin

n  methods (pgs 354-357)
n  fail() – the stream has reached a bad state

n  get() – gets the next character in the stream

n  last char is std::char_traits<char>::eof() !
n  unget() – puts the last character back on the stream

n  putback(char p) – puts p at the beginning of the stream

n  peek() – shoes what next will give without removing it from the
stream

n  getline(char[] buffer, int bufferSize) – takes up to buffersize length
line off of the stream and puts it in buffer

+
cin

n  input manipulators (pg. 358)
n  used in conjunction with >> operator
n  boolalpha – reads false as false and anything else as true
n  noboolalpha* – reads 0 as false and anything else as true
n  hex, oct, dec* – specify the numeric base (16, 8, or 10).
n  skipws* – skip over all the whitespace in the stream
n  noskipws – don't skip all of the whitespace in the stream
n  ws – skip the current sequence of whitespace at the current loc.
n  get_money – reads money format
n  get_time – reads time format
n  quoted – reads a string in quotes
n  (* means default)

+
cout

n  output manipulators (pg. 351)
n  most are complementary to cin

n  setprecision – number of decimal places to use

n  setw – the field width of numerical output

n  setfill – the character to pad the output of a number smaller than
the value of setw

n  showpoint – show the decimal point of the floating point number

n  noshowpoint – don't show the decimal point of the floating point
number with no fractional part.

