Java vs. C++

Part3

+ .
Review

= Expressions

m Boolean Expresions
= Relational Operators
= Logical Operators

m Assignment as expression

+ .
Expressions

= Numeric constants and variables
Eg,1,1.23 x

m Value-returning functions
E.g., getchar ()

m Expressions connected by an operator
Eg,1l + 2, x * 2, getchar()-1

m All expressions have a type

+ .
Boolean Expressions

m C does not have type boolean
m False is represented by integer 0
m Any expression evaluates to non-zero is considered true

m True is typically represented by 1 however

+ . .
Relational Expressions

m Equality/Inequality A

= if (x == 1) == (equality)
mif (x !'= 1) = = (assignment)
m Relation

= if (x > 0)
mif (x >= 0)
" if (x < 0)
®if (x <= 0)

The values are internally
represented as integer.
true — 1 (not 0), false — 0

W A NV V

+
Complex Condition
(Logical Operators)
mAnd

if ((x > 0) && (x <= 10)) 0<x=<10

uOr
if ((x > 10) || (x < -10)) |x|>10

mNegation

if ('(x > 0)) not (x>0) < x=<0

Beware that & and | are also C operators

+ .
Assignment as Expression

m Assignment
m Assignments are expressions

= Evaluates to value being assigned

mExample
intx=1, y=2, z = 3;

x = (y =2); evaluates to 3 (true)

3 3*—3 L
\ J l if (x = 3) {
evaluates to 3 ¢ } o

1/31/16

+
if-else Statement

int main() {
int choice;
scanf ("%d", &choice); //user input

if (choice == 1) {

printf ("The choice was 1.\n");

}

else {

printf ("The choice wasn't 1.\n");
}

return 0;

+
Lazy Logical Operator Evaluation

m If the conditions are sufficient to evaluate the entire
expression, the evaluation terminates at that point
=> lazy

« Examples
oif ((x > 0) && (x <= 10))
Terminates if (x > 0) fails
sif ((x > 10)&&(x < 20)) || (x < -10))
Terminates if (x > 10) && (x < 20) succeeds

+
Use of Braces

if (choice == 1) {
printf ("1\n");
}
else {
printf ("Other\n") ;
}

if (choice == 1)
printf ("1\n");
else
printf ("Other\n") ;

When the operation is

a single statement,

" and '}' can be omitted.
But, don't!!!

switch Statement

L I
switch (integer expression) {
~case constant:
statements
break;
— case constant:
statements
break;
possibly more cases
——default:
Statements

Multi-branching

+
break Fall Through

= Omitting break in a switch statement will cause program control
to fall through to the next case

m Can be a very convenient feature
m Also generates very subtle bugs

m switch statements only test equality with integers

Lec03 12

Example

int x, y, result = 0; cin >> x >> y; I
switch(x) {
case 1: break;
case 2:
case 3: result = 100;
case 4:
switch(y) {
case 5: result += 200; break;
default: result = -200; break;
}
break;
default: result = 400; break;

1/31/16

+
while Loops

while (true) {
/* some operation */

while and Character Input

m std: :char_traits<char>::eof () is a constant defined in
iostream
=_cof - stands for End Of File

int main() {
string read;
while ('cin.fail()) {
int next = cin.get();
if (next == std::char_traits<char>::eof()) {
break;
}
read += static_cast<char>(next); // Bppend character.
}
cout << " read: " << read << endl;
return 0;

while and Character Input alternate

mno need for failure checking.

int main() {
string read;
char next;
while (cin.get(next)) {
read += next; // Append character.
}
cout << " read: " << read << endl;
return 0;

while and Character Input alternate2

m no need for failure checking.

m uses >> operator

int main() {
string read;
char next;
while (cin >> noskipws >> next) {

read += next; // Append character.

}
cout << " read: " << read << endl;
return 0;

while and Character Input alternate3

®m use an assignment as expression.

int main() {
string read;
int next;
while ((next = cin.get()) !'=
std::char_traits<char>::eof()) {
read += static_cast<char>(next); // BAppend character.
}
cout << " read: " << read << endl;
return 0;

Review:Assignment has value

m In C++, assignment expression has a value, which is the value of the
lefthand side after assignment.

m Parensin (next = cin.get()) !=
std::char_traits<char>::eof() are necessary.

m next = cin.get() '=
std::char_traits<char>::eof()

is equivalent to

next = (cin.get() =
std::char_traits<char>::eof())

m next gets assigned 0 or 1.

1/31/16

+...
Strings

#include <string>
#include <iostream>
using namespace std;

public class StringTest {
public static void

main(String[] args) { int mainQ) {
String x = "hello"; string x =
String y = "world"; string y =
Stringz=x+", "+y+ "I\n"; strin _ "Nt .
: . g z = +y + "I\n";
System.out.print(z); cout << z;

o

+
C-Style Strings

m char* x = "hello";

Stack Heap

myString

FIGURE 21

+
C-Style Strings

m char* x = "hello";

Index:
myString 0

1

2

3

4

5

6
FIGURE 2-1

+
Streams

= Input = Input
® cin - the stream
= >>—the operator

= System.in — the stream

= Scanner =

new Scanner(System.in); m works on all primitive types

m default delimiter is

= (must use exceptions) whitespace

= Output = Output
= System.out — the stream m cout — the stream

= System.err — the stream = cerr - the stream

m << - the operator

m works on all primitive types

cin

= methods (pgs 354-357)
m fail() - the stream has reached a bad state
= get() — gets the next character in the stream
m last charis std: :char_traits<char>::eof()

unget() — puts the last character back on the stream

putback(char p) - puts p at the beginning of the stream

peek() - shoes what next will give without removing it from the
stream

getline(char[] buffer, int bufferSize) — takes up to buffersize length
line off of the stream and puts it in buffer

cin

= input manipulators (pg. 358)

used in conjunction with >> operator

boolalpha - reads false as false and anything else as true
noboolalpha* - reads 0 as false and anything else as true
hex, oct, dec* - specify the numeric base (16, 8, or 10).
skipws* — skip over all the whitespace in the stream
noskipws — don't skip all of the whitespace in the stream
ws — skip the current sequence of whitespace at the current loc.
get_money — reads money format

get_time - reads time format

quoted - reads a string in quotes

(* means default)

1/31/16

cout

= output manipulators (pg. 351)

most are complementary to cin
setprecision — number of decimal places to use
setw — the field width of numerical output

setfill - the character to pad the output of a number smaller than
the value of setw

showpoint — show the decimal point of the floating point number

noshowpoint — don't show the decimal point of the floating point
number with no fractional part.

