
1/31/16	

1	

+

Java vs. C++

Part 3

+
Review

n  Expressions

n  Boolean Expresions

n  Relational Operators

n  Logical Operators

n  Assignment as expression

+
Expressions

n  Numeric constants and variables
E.g., 1, 1.23, x

n  Value-returning functions
E.g., getchar()

n  Expressions connected by an operator
E.g., 1 + 2, x * 2, getchar()-1

n  All expressions have a type

+
Boolean Expressions

n  C does not have type boolean

n  False is represented by integer 0

n  Any expression evaluates to non-zero is considered true

n  True is typically represented by 1 however

+
Relational Expressions

n  Equality/Inequality
n  if (x == 1)
n  if (x != 1)

n  Relation
n  if (x > 0)
n  if (x >= 0)
n  if (x < 0)
n  if (x <= 0)

== (equality)
= (assignment) ≠

>
≥
<
≤

The values are internally
represented as integer.
true → 1 (not 0), false → 0

+
Complex Condition
(Logical Operators)

n And
if ((x > 0) && (x <= 10))

n Or
if ((x > 10) || (x < -10))

n Negation
if (!(x > 0))

0 < x ≤ 10

⏐x⏐> 10

not (x > 0) ⇔ x ≤ 0

Beware that & and | are also C operators

1/31/16	

2	

+
Assignment as Expression

n Assignment
n Assignments are expressions
n Evaluates to value being assigned

n Example
int x = 1, y = 2, z = 3;
x = (y = z);
3 3 3

 evaluates to 3

if (x = 3) {
 ...
}

evaluates to 3 (true)

+

int main() {
 int choice;
 scanf("%d", &choice); //user input

 if (choice == 1) {
 printf("The choice was 1.\n");
 }
 else {
 printf("The choice wasn't 1.\n");
 }
 return 0;
}

if-else Statement

+
Lazy Logical Operator Evaluation
n  If the conditions are sufficient to evaluate the entire

expression, the evaluation terminates at that point
=> lazy

•  Examples
ú if ((x > 0) && (x <= 10))

 Terminates if (x > 0) fails
ú if ((x > 10)&&(x < 20))||(x < -10))

 Terminates if (x > 10) && (x < 20) succeeds

+
Use of Braces

if (choice == 1) {
 printf("1\n");
}
else {
 printf("Other\n");
}

When the operation is
a single statement,
'{' and '}' can be omitted.
But, don't!!!

if (choice == 1)
 printf("1\n");
else
 printf("Other\n");

+
switch Statement

switch (integer expression) {
case constant:
 statements
 break;
case constant:
 statements
 break;
possibly more cases
default:
 statements
}

Multi-branching

+

12 Lec03

break Fall Through

n  Omitting break in a switch statement will cause program control
to fall through to the next case

n  Can be a very convenient feature

n  Also generates very subtle bugs

n  switch statements only test equality with integers

1/31/16	

3	

+
Example

int x, y, result = 0; cin >> x >> y;
switch(x) {
 case 1: break;
 case 2:
 case 3: result = 100;
 case 4:
 switch(y) {
 case 5: result += 200; break;
 default: result = -200; break;
 }
 break;
 default: result = 400; break;
}

+
while Loops

while (true) {
 /* some operation */
}

+

int main() {
 string read;
 while (!cin.fail()) {
 int next = cin.get();
 if(next == std::char_traits<char>::eof()) {
 break;
 }
 read += static_cast<char>(next); // Append character.
 }
 cout << " read: " << read << endl;
 return 0;
}

while and Character Input
n  std::char_traits<char>::eof() is a constant defined in

iostream
n  eof - stands for End Of File

pg. 354

+

int main() {
 string read;
 char next;
 while (cin.get(next)) {
 read += next; // Append character.
 }
 cout << " read: " << read << endl;
 return 0;
}

while and Character Input alternate
n  no need for failure checking.

pg. 355

+

int main() {
 string read;
 char next;
 while (cin >> noskipws >> next) {
 read += next; // Append character.
 }
 cout << " read: " << read << endl;
 return 0;
}

while and Character Input alternate2
n  no need for failure checking.

n  uses >> operator

+

int main() {
 string read;
 int next;
 while ((next = cin.get()) !=
 std::char_traits<char>::eof()) {
 read += static_cast<char>(next); // Append character.
 }
 cout << " read: " << read << endl;
 return 0;
}

while and Character Input alternate3
n  use an assignment as expression.

1/31/16	

4	

+
Review:Assignment has value

n  In C++, assignment expression has a value, which is the value of the
lefthand side after assignment.

n  Parens in (next = cin.get()) !=
std::char_traits<char>::eof() are necessary.

n  next = cin.get() !=
std::char_traits<char>::eof()
is equivalent to

 next = (cin.get() !=
std::char_traits<char>::eof())

n  next gets assigned 0 or 1.

+
Strings

Java C++

+
C-Style Strings

n  char* x = "hello";

+
C-Style Strings

n  char* x = "hello";

Index:
0
1
2
3
4
5
6

+
Streams

n  Input

n  System.in – the stream

n  Scanner =
 new Scanner(System.in);

n  (must use exceptions)

n  Output

n  System.out – the stream

n  System.err – the stream

n  Input
n  cin – the stream
n  >> – the operator

n  works on all primitive types
n  default delimiter is

whitespace

n  Output
n  cout – the stream
n  cerr – the stream
n  << – the operator

n  works on all primitive types

Java C++

+
cin

n  methods (pgs 354-357)
n  fail() – the stream has reached a bad state

n  get() – gets the next character in the stream

n  last char is std::char_traits<char>::eof() !
n  unget() – puts the last character back on the stream

n  putback(char p) – puts p at the beginning of the stream

n  peek() – shoes what next will give without removing it from the
stream

n  getline(char[] buffer, int bufferSize) – takes up to buffersize length
line off of the stream and puts it in buffer

1/31/16	

5	

+
cin

n  input manipulators (pg. 358)
n  used in conjunction with >> operator
n  boolalpha – reads false as false and anything else as true
n  noboolalpha* – reads 0 as false and anything else as true
n  hex, oct, dec* – specify the numeric base (16, 8, or 10).
n  skipws* – skip over all the whitespace in the stream
n  noskipws – don't skip all of the whitespace in the stream
n  ws – skip the current sequence of whitespace at the current loc.
n  get_money – reads money format
n  get_time – reads time format
n  quoted – reads a string in quotes
n  (* means default)

+
cout

n  output manipulators (pg. 351)
n  most are complementary to cin

n  setprecision – number of decimal places to use

n  setw – the field width of numerical output

n  setfill – the character to pad the output of a number smaller than
the value of setw

n  showpoint – show the decimal point of the floating point number

n  noshowpoint – don't show the decimal point of the floating point
number with no fractional part.

