CS246

Pointers and Arrays

+
Today's Goals

mPointers
mDeclaration
mAssignment
m[ndirection/de-referencing

mArrays
m1D arrays
mpointer arithmetic
m2D arrays

+
Variable and Address

m Variable = Storage in computer memory
= Contains some value
= Must reside at a specific location called address
= Basic unit — byte
= Imagine memory as a one-dimensional array with
addresses as byte indices

70 [}char

s int

+ .
Pointer — Reference

m A pointer (pointer variable) is a variable that stores
an address (like Java reference)
= value — address of some memory

m type — size of that memory

mRecall in Java, when one declares variables of a
class type, these are automatically references.

mIn C, pointers have special syntax and much greater
flexibility.

1
= A variable consists of one or more bytes, depending on its 10
type (size) 4
6
95
30[201
31l 12,
¢
A
address value
Memory and Address

m A machine with 16 Megabytes of memory has ?
bytes 16x2% =2%x2™ =16,777,216

mSince each byte has a unique address, there are at
least that many addresses

m A pointer stores a memory address, thus the size of a
pointer is machine dependent

m With most data models it is the largest integer on the
machine, size of unsigned long

mDefined in inttypes.h
muintptr tanduintmax_t

+
Address Operations in C

mDeclaration of pointer variables
nThe pointer declarator ‘*’

mUse of pointers
nThe address of operator ‘&’

nThe indirection operator ‘*’ — also known
as de-referencing a pointer

CS246

+_ . .
Pointer Declaration

m Syntax
m destinationType * varName ;

mMust be declared with its associated type.

mExamples
mint *ptrl; ptrl
A pointer to an int variable
* .
n cha:r: ptr2; A ptr2
A pointer to a char variable
will contain addresses

+
Pointers are NOT integers

m Although memory addresses are essentially very large
integers, pointers and integers are not
interchangeable.

mPointers are not of the same type

mA pointer’ s type depends on what it points to
mint *pl; // sizeof (int)
mchar *p2; // sizeof (char)

uC allows free conversion btw different pointer types
via casting (dangerous)

+
Address of Operator

mSyntax
m & expression
The expression must have an address. E.g., a
constant such as “1” does not have an address.

mExample
=1; x

mint x =
f (&X) ; address = 567
The address of x (i.e. where x is stored in
memory), say, the memory location 567, (not 1) is
passed to £.

+
Pointer Assignment

m A pointer p points to x if x* s address is stored
inp
mExample x

mint x = 1; address = 567

int *p;
P p [567

P = &x;

Interpreted as: P E—» x

+
Pointer Diagram

0012FF88 8

ip i (@0012FF88)

int i = 8;
int *ip;

ip = &i;

+
Pointer Assignment

m A pointer p points to x if x” s address is stored
inp
mExample x

mint x = 1; address = 567

int *p, *q;
a

q=Pp/
Interpreted as:

CS246

+ . .
Pointer Assignment

mExample
mint x=1, y=2, *p, *q;
P = &; q = &y;

q=p; xY

address = 567~.address = 988
P 1

+
Indirection Operator
Note: ‘*” in a declaration and
‘*’ in an expression are
.Syntax different.
u* pointerVar int *p; int X p; int* p;
m Allows access to value of memory being pointed to
m Also called dereferencing

mExample

mint x = 1, *p;
cout << *p << endl;
*p refers to x; thus prints 1

+
Assignment Using Indirection Operator

mAllows access to a variable indirectly through a
pointer pointed to it.

m Pointers and integers are not interchangeable

mExample
mint x = 1, *p;
P = &x;
" - 2, R
® *p is equivalent to x

+
Schematically

int x = 1; xlIl
int *p; pl |

P X :
P = Ul

cout << *p; prints 1 x
*p = 2; P -

cout << x; prints 2

+
Arrays

¢ Declaration —int a[5]; a L
* Assignment—a[0] = 1;
* Reference —y = a[0];

m Schematic representation

0 1 2 k-2 k-1 index

NN

element

+
Pointers and Arrays

m Arrays are contiguous allocations of

memory of the size: pointer (I\\/Ien::ry
sizeof (elementType) -»1 31
2 4
* numberOfElements 3%
array|| 4 [30
m Given the address of the first byte, using 2 110
the type (size) of the elements one can 7
calculate addresses to access other 8] 6
elements I 3L
30[_45

31 12,

Y

1
address value

CS246

+
Name of an Array

m The variable name of an array is also a pointer to its first element.

ézlaé]lllllllﬁ]

a[0] a[1] a[8]

m a == &a[0]

m a[0] == *a

+
Pointer Arithmetic

m One can add/subtract an integer to/from a pointer

m The pointer advances/retreats by that number of elements (of the type
being pointed to)

ma+i == gal[i]

mal[i] == *(a+i)

m Subtracting two pointers yields the number of elements between them

20

+
Multi-Dimensional Array

int a[21[31; 2apP>?
21?2 1°?
0 1 2
al0J[1] =357 _-o[2 |5 |2
y = al0llll;; a %,
I N [— |
0 1 2 k2 k-1
> second
50 dimension
<5
s 1
Q
3
2

21

Pointer Arrays: Pointer to Pointers

mPointers can be stored in arrays

mTwo-dimensional arrays are just arrays
of pointers to arrays.

= int a[10][20]; int *b[10];

= Declaration for b allows 10 int pointers, with no space allocated.
= Each of them can point to an array of 20 integers

= int c[20]; b[0] = c;

mWhat is the type of b?

22

el
()
(4]
(V)]
[¢}
o,
>
5
&

T

23

+
Combining * and ++/--

® ++ and -~ has precedence over *
®afi++] = j;
mp=a; *p++ = j; <==> *(p++) = j;

® *p++; value: *p, inc: p

® (*p)++; value: *p, inc: *p

= ++(*p); value: (*p)+1l, inc: *p
® *++p; value: *(p+l), inc: p

24

CS246

+

Summary

m Pointer and integers are not exchangeable

m Levels of addressing (i.e. layers of pointers) can be
arbitrarily deep

m Failing to pass a pointer where one is expected or vise versa
always leads to segmentation faults.

m Understand the relationship between arrays and pointers

m Understand the relationship between two-dimensional
arrays and pointer arrays

m Pointer arithmetic is powerful but dangerous!

