
CS246

1

+

Pointers and Arrays

+
Today's Goals

n Pointers
n Declaration
n Assignment
n Indirection/de-referencing

n Arrays
n 1D arrays
n pointer arithmetic
n 2D arrays

2

+
Variable and Address

n  Variable = Storage in computer memory
n  Contains some value
n  Must reside at a specific location called address
n  Basic unit – byte
n  Imagine memory as a one-dimensional array with

addresses as byte indices
n  A variable consists of one or more bytes, depending on its

type (size)

3

Memory
70
31
4
6
30
1
10
4
6
95

201
12

0
1
2
3
4
5
6
7
8
9

30
31

address value

char

int

+
Pointer – Reference

n A pointer (pointer variable) is a variable that stores
an address (like Java reference)
n value – address of some memory
n  type – size of that memory

n Recall in Java, when one declares variables of a
class type, these are automatically references.

n In C, pointers have special syntax and much greater
flexibility.

4

+
Memory and Address

n A machine with 16 Megabytes of memory has ?
bytes

n Since each byte has a unique address, there are at
least that many addresses

n A pointer stores a memory address, thus the size of a
pointer is machine dependent

n With most data models it is the largest integer on the
machine, size of unsigned long

n Defined in inttypes.h
n uintptr_t and uintmax_t

5

216,777,1622216 20420 =×=×

+
Address Operations in C

n Declaration of pointer variables
n The pointer declarator ‘*’

n Use of pointers
n The address of operator ‘&’
n The indirection operator ‘*’ – also known

as de-referencing a pointer

6

CS246

2

+
Pointer Declaration

n Syntax
n destinationType * varName;

n Must be declared with its associated type.

n Examples
n int *ptr1;

 A pointer to an int variable
n char *ptr2;

 A pointer to a char variable

7

ptr1

ptr2

will contain addresses

+
Pointers are NOT integers

n Although memory addresses are essentially very large
integers, pointers and integers are not
interchangeable.

n Pointers are not of the same type

n A pointer’s type depends on what it points to
n int *p1; // sizeof(int)
n char *p2; // sizeof(char)

n C allows free conversion btw different pointer types
via casting (dangerous)

8

+

n Syntax
n & expression
 The expression must have an address. E.g., a
constant such as “1” does not have an address.

n Example
n int x = 1;
 f(&x);
 The address of x (i.e. where x is stored in
memory), say, the memory location 567, (not 1) is
passed to f.

Address of Operator
9

x 1
address = 567

+
Pointer Assignment

n A pointer p points to x if x’s address is stored
in p

n Example
n int x = 1;
 int *p;
 p = &x;

 Interpreted as:

10

p 567

x 1
address = 567

p x 1

+
Pointer Diagram

11

0012FF88 8

ip i (@0012FF88)

int i = 8;
int *ip;

ip = &i;

+
Pointer Assignment

n A pointer p points to x if x’s address is stored
in p

n Example
n int x = 1;
 int *p, *q;
 p = &x;
 q = p;
 Interpreted as:

12

p 567

x 1
address = 567

p x 1

q 567

q

CS246

3

+
Pointer Assignment

n Example
n int x=1, y=2, *p, *q;
 p = &x; q = &y;
 q = p;

13

p 567

y 2
address = 988

q 988

x 1
address = 567

567

+ Indirection Operator

n Syntax
n * pointerVar
n Allows access to value of memory being pointed to
n Also called dereferencing

n Example
n int x = 1, *p;
 p = &x;
 cout << *p << endl;
 *p refers to x; thus prints 1

14

p x 1

Note: ‘*’ in a declaration and
‘*’ in an expression are
different.
int *p; int * p; int* p;

+
Assignment Using Indirection Operator

n Allows access to a variable indirectly through a
pointer pointed to it.

n Pointers and integers are not interchangeable

n Example
n int x = 1, *p;
 p = &x;
 *p = 2;
 cout << x << endl;
n *p is equivalent to x

15

p x 1

p x 2

+
Schematically

16

int x = 1;

int *p;

p = &x;

cout << *p;

*p = 2;

cout << x;

x 1

p

prints 1

x 1

p

prints 2

x 2

p

+
Arrays

n  Schematic representation

element

0 1 2 k-2 k-1 index

•  Declaration – int a[5];
•  Assignment – a[0] = 1;
•  Reference – y = a[0];

a ? ? ? ? ?

a
0 4

? ? ? ? 1

+

18

Pointers and Arrays
n  Arrays are contiguous allocations of

memory of the size:
sizeof(elementType)
* numberOfElements

n  Given the address of the first byte, using
the type (size) of the elements one can
calculate addresses to access other
elements

Memory
70
31
4
6
30
1
10
4
6
31

45
12

0
1
2
3
4
5
6
7
8
9

30
31

address value

array

1
pointer

CS246

4

+

19

Name of an Array

n  The variable name of an array is also a pointer to its first element.

n  a == &a[0]

n  a[0] == *a

a:
a[0] a[1] a[8]

a a+1 a+8

+

20

n  One can add/subtract an integer to/from a pointer

n  The pointer advances/retreats by that number of elements (of the type
being pointed to)

n a+i == &a[i]

n a[i] == *(a+i)

n  Subtracting two pointers yields the number of elements between them

Pointer Arithmetic

+

21

Multi-Dimensional Array

0 1 2 k-2 k-1

0

1

2

second
dimension

first dim
ension

int a[2][3];

a[0][1] = 5;
y = a[0][1];

a ? ? ?
? ? ?

a

0 2
5 ? ?
? ? ?

0
1

1

+

22

Pointer Arrays: Pointer to Pointers

n Pointers can be stored in arrays
n Two-dimensional arrays are just arrays

of pointers to arrays.
n  int a[10][20]; int *b[10];
n  Declaration for b allows 10 int pointers, with no space allocated.
n  Each of them can point to an array of 20 integers
n  int c[20]; b[0] = c;

n What is the type of b?

+

23

Ragged Arrays
+

24

Combining * and ++/--

n  ++ and -- has precedence over *
n  a[i++] = j;

n  p=a; *p++ = j; <==> *(p++) = j;

n  *p++; value: *p, inc: p

n  (*p)++; value: *p, inc: *p

n  ++(*p); value: (*p)+1, inc: *p

n  *++p; value: *(p+1), inc: p

CS246

5

+
Summary

n Pointer and integers are not exchangeable

n Levels of addressing (i.e. layers of pointers) can be
arbitrarily deep

n Failing to pass a pointer where one is expected or vise versa
always leads to segmentation faults.

n Understand the relationship between arrays and pointers

n Understand the relationship between two-dimensional
arrays and pointer arrays

n Pointer arithmetic is powerful but dangerous!

25

