Functions and Pointers

+
Variables

m All primitives are values
m All objects are references

= There are no pointers

m all variables are either
= values
m intx;
= references
m float &y;
= pointers
m char* z;

+ .
Functions

= void primitive(int x) {
// the argument passed to
// primitive is copied to
// the stack variable x

}

= void object(Object y){
//'y is a reference to
// the argument passed to
// to the method object
}

= void anyFunction(type x) {
// the argument passed to
// anyFunction is copied to
// the stack variable x

}

= void anyFunction(type &y){
//'y is a reference to
// the argument passed to
// to anyFunction

}

+ .
Functions

= int primitive(int x) {
// the argument passed to
// primitive is copied to
// the stack variable x

}

= Object object(Object y){
//'y is a reference to
// the argument passed to
// to the method object
}

= int anyFunction(type x) {
// the argument passed to
// anyFunction is copied to
// the stack variable x
return 0;

}

= type anyFunction(type &y){
// y is a reference to
// the argument passed to
// to anyFunction
typex=vy;
return x; // note return a value

+
The NULL Pointer

m C guarantees that zero is never a valid address for data

m A pointer that contains the address zero known as the NULL pointer

m It is often used as a signal for abnormal or terminal event

m [t is also used as an initialization value for pointers

+
Pass by Value

m All functions are pass-by-value in C

= A copy is made of each parameter” s value and then the copy is passed

® In C, variables supplied as parameters to a function call are protected against

change

m ic. impossible to write a swap (x, y) function

to that variable

Only way to modify a variable through a function is to assign the return value

m However C++ adds pass-by-referencell!
® when you pass by reference the reference parameters are not protected
against change
® ie. possible to write a swap (x, y) function

2/5/16

Pass by Value and Pointers

m Some functions are pass-by-value in C++

s-by-value still holds even if the

meter is a pointer
u A copy of the pointer’ s value is made — the address stored in the pointer

variable

® The copy is then a pointer pointing to the same obje:
parameter

s the original

® Thus modifications via de-referencing the copy STAYS.

Pass by Reference and Pointers

m Other functions are pass-by-reference in C++

m Pass-by-reference still holds

ven if the parameter is a pointer

B A reference of the pointer is passed— the address stored in the pointer can
change

® The reference is then a pointer pointing to the same object as the original
parameter

® Thus modifications via de-referencing the copy STAYS.

= In addition, you can modify the original pointer.

Function Arguments

m x and y are copies of the original, and thus a and b can not be altered.

void swap(int x, int y) {

int tmp;
tmp = x; x =y; y = tmp;
}
int main() { Wrong!

int a =1, b = 2;

swap(a, b);
return 0;

}

Function Arguments

m x and y are references to the original, and thus @ and b can be altered.

void swap(int &x, int &y) {
int tmp;
)th=X:x=y;y=tmp;

int main() { Right!
int a =1, b = 2;

swap(a, b);
return 0;

}

Pointers as Function Arguments

m Passing pointers — a and b are passed by reference
(the pointers themselves px and py are still passed by value)

void swap(int *px, int *py) {
int tmp;
, tmp = *px; *px = *py; *py = tmp;

int main() {
int a=1, b =2;

swap(&a, &b);
return 0;

}

+Pointers as Function Arguments

* Write a function that will decompose a double
value into an integer part and a fractional part.

* Asaresult of the call, int part points to i and
frac_part points to d:

e pare !
frac_part = .14159 |4

2/5/16

+Pointers as Function Arguments ‘I

void decompose(double d, int xi, double xfrac) !
*x1 = (int) d;
*frac = d - *i;

int main() {
int int_part;
double frac_part, input;

cin >> input;

decompose (input, &int_part, &frac_part);

cout << input << "decomposes to " <<
xint_part << " and " << xfrac_part << endl;

return 0;

Pass by Reference

mInC:
® The pointer variables themselves are still passed by value
® In a function, if a pointer argument is de-referenced, then the modification
indirectly through the pointer will stay
m In C++:

= using the reference type (&) allows the copying of pointers and de-referencing to
be invisible to the user. (Syntactic sugar)

Pointers are Passed by Value

void f(int *xpx, int xpy) {
pPX = py;

int main() {
int x =1, y = 2, *px;
px = &x;
f(px, &y);
cout << *px << endl;

+
Modification of a Pointer (in C)

void g(int xxppx, int xpy) {
*ppx = py;

int main() {
int x =1, y = 2, *px;
px = &x;
g(&px, &y);
cout << *px << endl;

+
Modification of a Pointer (in C++)

void g(int *x&ppx, int xpy) {
ppx = py;

int main() {
int x =1, y = 2, *px;
px = &x;
g(px, &);
cout << *px << endl;

Pointer as Return Value

m We can also write functions that return a pointer

m Thus, the function is returning the memory address of where the value
is stored instead of the value itself

m Be very careful not to return an address to a temporary (stack) variable
in a function!!!

2/5/16

+
Example

m x and y are copies of the original, and thus what is &x and &y?

int* max(int *x, int *y) {
if (¥x > *y) {

return x; int* max(int x, int y) {

} if (x >
. ¥ {
return y; return &x;
}

turn &y;
int main() { i

int a =1, b = 2, *p;

p = max(&a, &b);

= b);
return 0; P = max(a, b)

}

Reference as Return Value

® We can also write functions that return a reference
m Thus, the function is returning a reference to the value.

m Be very careful not to return a reference to a temporary (stack) variable
in a function!!!

® You should only ever return a reference that was passed into the

function, or a reference to a global variable.

m If you return a reference to memory on the heap, then you need to
make sure that the reference loses scope before the memory is deleted.

+
Example

m x and y are references of the original, and thus what is returned?

int& max(int &x, int &y) {
if (x> y) {

return x; int& max(int x, int y) {

} if (x > y){

return y; return x;
. . return y;
int main() { }

int a=1, b =2, *p;

p = max(a, b);

= max(a, b);
return 0; P (a, b

}

+
Arrays as Arguments

i 1
lArrays are passed #define SIZE 10

by reference

void init(int a[l) {
int i;

-MOdiﬁcationS stay for (i == 00;i<SIZE;i++){

a[i] ;

}

/* equivalent pointer alternative */ }
void init(int *a) {
int i; int main() {
int a[SIZE];
for(i = 0;i<SIZE;i++){

Array Arguments

mWhen a function parameter is a one-dimensional array,
the length of the array can be left unspecified:

int f(int a[]){ /* no length specified */
}

mWe can supply the length—if the function needs it—as
an additional argument.

*(a+i) = 0; init(a);
} return O0;
} }
2
Array Arguments
® Example:

int sum_array(int al[], int n)

{

int i, sum = 0;

for (1 = 0; 1 < n; i++)
sum += al[il;

return sum;

m Since sum_array needs to know the length of a, we must supply it as
a second argument.

2/5/16

+
Array Arguments

® The prototype for sum_array has the following appearance:
int sum_array(int a[], int n);
m We can omit the parameter names if we wish:

int sum array(int [], int);

+
Array Arguments

® When sum_array is called, the first argument will be the name
of an array, and the second will be its length:

#define LEN 100
int main (void)

int b[LEN], total;

"t.otal = sum_array (b, LEN);
i

m Notice that we don't put brackets after an array name when
passing it to a function:

total = sum_array(b[], LEN); /*** WRONG ***/

+
Array Arguments

m Suppose that we' ve only stored 50 numbers in the b array, even though it can
hold 100.

m We can sum just the first 50 elements by writing
total = sum_array(b, 50);

m Be careful not to tell a function that an array argument is /ager than it really is:

total = sum array (b, 150); /*** WRONG ***/

sum_array will go past the end of the array, causing undefined behavior.

+
Array Arguments

m A function is allowed to change the elements of an array parameter, and
the change is reflected in the corresponding argument.

m A function that modifies an array by storing zero into each of its
clements:

void store zeros(int al[], int n)

int 1i;
for (1 0; 1 < n; i++)
ali] = 0;

+
Array Arguments

m If a parameter is 2 multidimensional array, only the length
of the first dimension may be omitted.

m [f we revise sum_array so that a is a two-dimensional array,
we must specify the number of columns in a:
#define LEN 10
int sum_two_dimensional_array(int a[] [LEN], int n)

{

int i, j, sum = 0;
for (i = 0; i < n; i+4)
for (j = 0; j < LEN; j++)
sum += ali]l[j];

) return sum;

2/5/16

