2/26/16

OpenCV

(Open Source
Computer Vision)

+
Open Source Software

m What is it?

m License nuances: GNU GPL vs. GNU LGPL
m Apache
= BSD
= MIT
= Mozilla PL
= Eclipse PL

m Free software is about freedom, not about money.

+
OpenCV History

m Officially launched in 1999 by Intel Research

m In the early days of OpenCYV, the goals of the project were
described as:
= Advance vision research by providing an open basic vision
infrastructure.
= Disseminate vision knowledge.
= Advance vision-based commercial applications.

m 1.0 version was released in 2006
m Version 2 in 2009 (We are using 2.4.1)
m Version 3 in 2015

+
Parts of OpenCV

m core
= basic functionality
m imgproc
= manipulation of images
m highgui
= reading and writing images/videos

core

= Mat
= The basic storage structure for images.

+
cout_mat

int main(int,char**)
{
| helpQ;
// Mat I = Mat::eye(4, 4, CV_64F);
// T.at<double>(1,1) = CV_PI;

]

// cout << "I = " << I << ";" << endl;

int numRows = 10;

int numColumns = 3;

int numColors = 3;

int numC2 = numColumns * numColors;

Mat r = Mat(numRows, numColumns, CV_8UC3);
// this randomly fills values

randu(r, Scalar::all(@), Scalar::all(255));

2/26/16

// this fills the same values in order
uchar* data = r.data;
for(int 1 = @; 1 < numRows; ++i) { // the rows
for(int k = @; k < numColumns; ++k) { // the columns
for(int j = @; j < numColors; ++j) { // the colors
data[i*numC2+k*numColors + j] = (i+l); // set the row
}
}
}

Mat r2 = Mat(numRows, numColumns, CV_8UC3);

// this fills the same values in order

data = r2.data;

for(int 1 = @; 1 < numRows; ++i) { // the rows

for(int k = @; k < numColumns; ++k) { // the columns

data[i*numC2+k*numColors + @] = (i+l1); // set the row
data[i*numC2+k*numColors + 1] = (k+1); // set the column

data[i*numC2+k*numColors + 2] = 3; // set the color

4.
formatted python output.

1
18, 18]]]

[1. 3, 3]]

+
Creating a Mat object explicitly

Mat() Constructor

Mat M(2,2, CV_8UC3, Scalar(0,0,255));
cout << "M = " << endl << " " << M << endl << endl;

For two dimensional and multichannel images we first define
their size: row and column count wise.

Then we need to specify the data type to use for storing the
elements and the number of channels per matrix point. To do
this we have multiple definitions constructed according to the
following convention:

CV_[The number of bits per item][Signed or Unsigned][Type Prefix]C[The channel number]

CV_8UC3 means we use unsigned char types that are 8 bit long and each
pixel has three of these to form the three channels

4.
Note

= You can fill out a matrix with random values using the randu()
function.You need to give the lower and upper value for the
random values:

Mat R = Mat(3, 2, CV_8UC3);
randu(R, Scalar::all(@), Scalar::all(255));

m Printing python formatted Matrices

cout << "R (python) =" << endl <<
format(R,"python") << endl << endl;

+
Creating a lookup table

int divideWith = @; // convert our input string to number - C++ style
stringstream s;

s << argv[2];

s >> divideWith;

if (Is |1 !divideWith)

cout << "Invalid number entered for dividing. " << endl;
return -1;

¥

uchar table[256];
for (int i = @; i < 256; ++i)
table[i] = (uchar)(divideWith * (i/divideWith));

*.
DownSampling the image based
on table

int 1i,3;

uchar* p;

for(C i = @; 1 < nRows; ++1)

{
p = I.ptr<uchar>(i);
for (j = @; j < nCols; ++j)
{

p[j] = table[p[j1];

}

}

return I;

+
How the image matrix is stored in
the memory

Column 0 Column 1 Column ... Column m
0.0 0.1 0,

Row 0 . m
Rowl 10 11 1Lm
Row ... | .0 ol . m
Rown | n0 nl n,.. nm

For multichannel images the columns contain as many sub columns as the number of channels. For example in
case of an RGB color system:

Column 0 Column 1 Column Column m
Row 0 [JEIY00 0.1 K8 0.m [N
Row 1 N0 11 Lm [
Row ... [} 1 [m [
Row n [} 11 [N . m RN

2/26/16

+ . .
Mask operations on matrices

m Mask operations on matrices are quite simple.
= recalculate each pixels value in an image according to a mask
matrix (also known as kernel).
= holds values that will adjust how much influence neighboring
pixels (and the current pixel) have on the new pixel value.
= From a mathematical point of view we make a weighted average,
with our specified values.

u filter2D
= Define mask Mat: Mat kern = (Mat_<char>(3,3) << 0, -1, 0,
-1, 5, -1,
0, -1, 0);

= Call filter2d £ilter2D(I, K, I.depth(), kern);

+
Linear Blending

m Problem: join 2 images

m Algorithm:

= Preconditions: Images X1, _, XZ,’c, Blending Coefficient Bin [0,1],
offset gamma

= Postcondition: Blended Image Y1,
= for eachiin [0,r) and jin [0,c)
m Yl =B*XI,_+(l-B)*X2 +gamma

+
OpenCV code for linear blending

We need two source images (fo(x) and f;(x)). So, we load them in the usual way:

srcl = imread("../../images/LinuxLogo.3pg");
src2 = imread("../../images/WindowsLogo.3pg");

Warning: Since we are adding src1 and src2, they both have to be of the same size (width and height)
and type.

2. Now we need to generate the g(x) image. For this, the function addWeighted comes quite handy:
beta = (1.0 - alpha);

addWeighted(srcl, alpha, src2, beta, 0.0, dst);

0.0 Linear Blend

/Aﬁ‘iuﬂ :

+
Making cpp files that use OpenCV

all: cout_mat

cout_mat:

g++ -Wall cout_mat.cpp -o cout_mat

rm -f cout_mat core

clean:

Our lab has the OpenCYV library as a first class library (i.e. it is in the
standard include and lib path. So all we need are the —1 options.
Aside from opencv_core, there is opencv_improc, opencv_highgui,
and others.

+
Where do we go from here?

= OpenCV API -
http://docs.opencv.org/2.4.11/modules/refman.html

m OpenCV User guide -
http://docs.opencv.org/2.4.11/doc/user_guide/
user_guide.html

