
2/26/16	

1	

+

OpenCV

(Open Source
Computer Vision)

+
Open Source Software

n  What is it?

n  License nuances: GNU GPL vs. GNU LGPL
n  Apache

n  BSD

n  MIT

n  Mozilla PL

n  Eclipse PL

n  Free software is about freedom, not about money.

+
OpenCV History

n  Officially launched in 1999 by Intel Research

n  In the early days of OpenCV, the goals of the project were
described as:
n  Advance vision research by providing an open basic vision

infrastructure.
n  Disseminate vision knowledge.
n  Advance vision-based commercial applications.

n  1.0 version was released in 2006

n  Version 2 in 2009 (We are using 2.4.1)

n  Version 3 in 2015

+
Parts of OpenCV

n  core
n  basic functionality

n  imgproc
n  manipulation of images

n  highgui
n  reading and writing images/videos

+
core

n  Mat
n  The basic storage structure for images.

+
cout_mat

2/26/16	

2	

+ +
formatted python output.

+
Creating a Mat object explicitly

CV_[The number of bits per item][Signed or Unsigned][Type Prefix]C[The channel number]

CV_8UC3 means we use unsigned char types that are 8 bit long and each
pixel has three of these to form the three channels

+
Note

n  You can fill out a matrix with random values using the randu()
function. You need to give the lower and upper value for the
random values:

 Mat R = Mat(3, 2, CV_8UC3); !
 randu(R, Scalar::all(0), Scalar::all(255)); !

n  Printing python formatted Matrices !

 cout << "R (python) = " << endl << !
 format(R,"python") << endl << endl; !

+
Creating a lookup table

+
DownSampling the image based
on table

2/26/16	

3	

+
How the image matrix is stored in
the memory

+
Mask operations on matrices

n  Mask operations on matrices are quite simple.
n  recalculate each pixels value in an image according to a mask

matrix (also known as kernel).

n  holds values that will adjust how much influence neighboring
pixels (and the current pixel) have on the new pixel value.

n  From a mathematical point of view we make a weighted average,
with our specified values.

n  filter2D
n  Define mask Mat:

n  Call filter2d

+
Linear Blending

n  Problem: join 2 images

n  Algorithm:
n  Preconditions: Images X1r,c , X2r,c, Blending Coefficient B in [0,1],

offset gamma

n  Postcondition: Blended Image Y1r,c

n  for each i in [0,r) and j in [0,c)

n  Y1r,c = B * X1r,c + (1 – B) * X2r,c + gamma

+
OpenCV code for linear blending

+
Making cpp files that use OpenCV

Our lab has the OpenCV library as a first class library (i.e. it is in the
standard include and lib path. So all we need are the –l options.
Aside from opencv_core, there is opencv_improc, opencv_highgui,
and others.

+
Where do we go from here?

n  OpenCV API -
http://docs.opencv.org/2.4.11/modules/refman.html

n  OpenCV User guide -
http://docs.opencv.org/2.4.11/doc/user_guide/
user_guide.html

