+
The Compilation Process

» Compiler:
o All . ¢ files are converted/assembled into
Assembly Language, i.e. making . s files.
» Assembler:

o The assembly language files from the previous
step are converted into object code (machine
code), i.e. .o files.

 Linker:

o The object code is then linked to libraries and
other files for cross-reference.

Lecl3

3/22/16

Compilation k

Compiler
Executable
W Assembler Ercaramn.

@: _’Lilk’er@

Compiler

.c ¢« Assembler Linker

+
Compiler/Assembler and Linker

m Compile green.o: cc —c green.c
m Compile blue.o: cc —c blue.c

m Link together: cc green.o blue.o

Compiler

¢ Assembler ¥ Linker
2

C}'EE!\

Executable

Lecl3

ISl S o
o 5] o o] 2 &
.c blue.o
blue.c
Lecl3
+ . .
Multiple Source Files k

* The decision to divide your program into
multiple source files is not only a matter of
size.

* One and only one . c file must contain a
main.

* Functions that handle some common
aspects of a program should be grouped into
the same file.

@ main, data structure implementation (i.e. linked
list), 1/O, utilities, display/GUI, etc

Lecl3

+ .
Header Files

m To share information between files. II
= types
= macros
= functions

= externals
m Each . c should have its own . h.

m Information share btw. several or all files should go into one .h
(usually main.h).

Lecl3

+
Types and Macros k

m Types:
® typedef

= enum

= Macros
= #include
= #define
= #ifdef

= ferror

Lecl3

3/22/16

Sharing Functions

m [f a function is to be called in more than one file, put its prototype
intoa .h.

m Always include the .h with £ s prototype in the . c that contains
£ s definition.

= Forany . ¢, always include your own . h.

m A header file should never contain function definitions.

Lecl3

+
Sharing Variables

m Variables shared between files are defined in one file, and declared in
all files that need to access it.

= Definition of a variable causes the compiler to set memory aside

= extern
= extern int i, a[];

= extern informs the compiler that the variables i and a are defined
elsewhere.

Lecl3

+ .
extern variables

m extern declarations often go in to a header file.

m The variable must have one (and only one) definition among all files.

® int x;

m Any file that wishes to access a variable that is defined in another file
must declare such a variable as extern

® extern int x;

Lecl3

Abstract

is lecture presents language technicalities,
mostly related to user defined types; that is,
classes and enumerations.

Stroustrup/Programming/2015

Chapter 9
Technicalities: Classes, etc.

Bjarne Stroustrup

www.stroustrup.com/Programming

Overview

Classes

= Implementation and interface
= Constructors

= Member functions
Enumerations

Operator overloading

Stroustrup/Programming/2015

Source files

1/ declarations:

class Token { ... };

class Token_stream {
Token get();

B
token.cpp: extern Token_stream ts;

#include "token.h"
/ldefinitions: .
Token Token_stream::; Token t = ts.get();
U0 e

Token_stream ts;

#include "token.h"

A header file (here, token.h) defines an interface between user code
and implementation code (usually in a library)
me #include dec ions in both .cpp files (definitions and

checking
troustrup/Programming/2015

7\
Members and member access

One way of looking at a class;
class X { /] this class’ name is X
/I data members (they store information)
ng the information)

Exampl

X

s return old; } // function member

Il var is a variable of type X
7; [access var’s data member m

var.mf(9); /I call var’s member function mff()

Stroustrup/Programming/2015

Struct and class

Class members are private by default:
class X {
int mf();
P
35

Means

Il error: mf'is private (i.e., inaccessible)

Stroustrup/Programming/2015

Classes

he idea:
= A class directly represents a concept in a program
t is plausible that it

Examples: vector, matrix, input stream, string, FFT, valve
controller, robot arm, device driver. ure on screen, dialog
box, graph, window, temperature reading, clock
m A class is a (user-defined) type that specifies h
of its type can be created and use:
= In C++ (as in most modern languages), a class is the
key building block for large programs
And very useful for small ones also
concept was originally introduced in Simula67

Stroustrup/Programming/2015

Classes

A class is a user-defined type
cla: { /] thi: " name is X
public: /| public members — that s the interface to users
/i (ac: hle all)
I functions
/I types
/I data (often best kept private)
private: /| private memb: that’s the implementation details
/I sible by membe Cthis class only)
Il functions
I types
/l data

Stroustrup/Programming/2015

Struct and class

A struct is a class where members are public by default:

struct X {
int m;

int m;
...

structs are primarily used for data structures where the
members can take any value

Stroustrup/Programming/2015

3/22/16

3/22/16

7\
Structs Dateg Structs

my_birthday: my_birthday

/| simplest Date (just data) /I simple Date (with a few helper functions for convenience)
struct Date {

struct Date { 7
inty,m,d; // year, month, day

int y,m,d; // year, month, day 3
i£]

Date my_birthd /' a Date variable (object)

birthday; /I a Date variable (object) 1l helper functions:

void init_day(Date& dd, int y, int m, int d); // check for valid date and initialize

my_birthday. 2;
y y m, and d are local

my_birthday.m
my_birthday.d = 1950; oops! (no day 1950 in month 30) void add_day(Date& dd, int n); Cr he Date by n days

later in the program, we’ll have a problem

init_day(my_birthday, 12, 30, 1950); // run time error: no day 1950 in month 30

Stroustrup/Programming/2015 Stroustrup/Programming/2015 20

Structs 1050 | Classes

/I simple Date d /I simple Date (control ac
guarantee initialization with constructor class Date {
provide some notational convenience & Il year, month, day
struct Date {
int y,m,d; /I year,; month, day for valid date and init
Date(int y, int m, int d); // constructor: check for valid date and initializ access functions:
void add_day(int n); increase the Date by n days oid add_day(int n); /I increase the Date by n dc
int month() { return m; }
int day() { return d; }
int year() { return y; }
Date my_birthday; /I error: my_birthday not initialized
Date my_birthday {12, 30, 1950}; ops! Runtime error

Date my_birthday {1950, 12, 30};

cout << my_birthday.month() <<endl; // we can read
my_birthday.m = 14 / error: Date::m is private
Stroustrup/Programming/2015 Stroustrup/Programming/2015

January 1, 1951
/I ouch! (now my_day is a bad date)

Classes Classes

my_bir

/I simple Date (some people prefer:
The notion of a “valid Date” is an important special case of the class Date {
idea of a valid value public:
We try to design our types so that values are guaranteed to be valid DatenyysPint i, inbod); s cohinicicr; chedoryaliduaeand,
o bt f Y initialize
ave to check for validity all the time oid add_day(int n); /I increase the Date by n days
what constitutes a valid value is called an “invariant”
qariant for Date (“a Date must represent a date in the past, present, or
is unusually hard to state preci
inty,m,d; // year, month, day
If we can’t think of a good invariant, we are probably dealing with
plain data Date::Date(int yy, int mm, int dd) /I definition; note :: ‘i
/{yy}, m{mmy}, d{dd} {/* . 35 /I note: member
void Date::add_day(int n) { / /}s /I definition
ou from poor bu =

Stroustrup/Programming/2015 Stroustrup/Programming/2015

Classes

rthday:

[simple Date (some people prefer implementation details last)

nt mm, int dd); // constructor: check for valid date and
[l initialize

void add_day(int n); /I increase the Date by n days
int month();

at
inty,m,d; // year, month, day

int month() { return m; } // er forgot Date.
/] this month() will b
/I not the membe
int Date::season() { /* } /I error: no member called season

Stroustrup/Programming/2015

Classes

Why bother with the public/private distinction?
Why not make everything public
m To provide a clean interface
Data and messy functio; n be made private
0 maintain an invariant
Only a fixed set of functions can access the data
ease debugging
Only a fixed set of functions can access the data
(known as the “round up the usual suspects” technique)
= To allow a change of representation
You need only to change a fix t of functions
You don’ t really know who is using a public member

Stroustrup/Programming/2015

“Plain” Enumerations

Simple list of constants:

enum { red, green }; // a “plain” enum { } doesn’t define a scope
int a = red; /I red is available here

enum { red, blue, purple }; // error: red defined twice

Type with a list of named constants
enum Color { red, green, blue, /*
enum Month { jan, feb, mar, /

Month m1 = jan;
Month m2 = red; I errc
Month m3 =7;

inti=ml; /I ok: an enumerator is converted to its value, i==0

Stroustrup/Programming/2015

3/22/16

Classes

I simple Date (what can we do in case of an invalid date?)
class Date {
public:
class Invalid { }; /[to be used as exception
Date(int y, int m, int d); /I check for valid date and initialize

te:
int y,m,d; Il year, month, day
bool is_valid(int y, int m, int d); is (v,m,d) a valid date?

Date:: Date(int yy, int mm, int dd)
v}, m{mmy}, d{dd} /I initialize data members
if (is_valid (y,m,d)) throw Inval Il check for validity

Stroustrup/Programming/2015

Enumerations

An enum (enumeration) is a simple user-defined
type, specifying its set of values (its enumerators)

For example:
enum class Month {
jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec
55
Month m = feb;
m=7; L can 't assign int to Month
int n=m; ’ we can t the numeric value of a |
Month mm = Month(7); /I convert int to Month (unchecked)

Stroustrup/Programming/2015

Class Enumerations

Type with a list of typed named constants

enum class Month { jan, feb, mar,
enum class Traffic_light { green, yellow, red }; // OK: scoped enumerators
Month m1 3 /] er
Month m / jan; /I OK
/I error: red isn't a
/] er
/I OK

inti=ml; /I error: an enumerator is not converted to int

Stroustrup/Programming/2015

3/22/16

Enumerations — Values Classes

my_birthday:
/I simple Date (use enum class Month) ¥
By default

/I the first enumerator has the value 0,
/I the next enumerator has the value “one plus the value of the
/I enumerator before it”

enum { horse, pig, chicken }; /I horse==0, p 1, chicken 1/ year
Month m;

You can control numberin)
int d; /I day

enum { jan=1, feb, march /* ... */ }; .
enum stream_state { good=1, f: 5 2
ail+eof; I flags==10. Date my_birthday(1950, 30, Month::dec); // er "d argument not a Month

stream_state s = flags; /N error: can't an int (0,0 stream s Date my_birthday(1950, MOnth::dec, 30); // OK
stream_state s2 = stream_state(flags); // explicit conversion (be careful!

Stroustrup/Programming/2015 Stroustrup/Programming/2015

Const

class Date { Date d {2004, Month::jan, 7 /I'a variable
public: const Date d2 {2004, Month::feb, 28}; /I a constant
/i d2=d; [l error: d2 is const
int day() const { returnd; } // const member: can’t modif d2.add(1); /I error d2 is const
void add_day(int n); /I non-const member: can modify d=d2; /] fine

d.add(1); / fine
0
15

Date d {2000, Month::jan, 20} ; d2.£(); /I should work if and only if f() doesn 't modify d2
const Date cd {2001, Month::feb, 21}; /Il how do we achieve tha y that's what we want, of course)

cout << d.day() <<" — "' << cd.day() << endl; 1l ok
d.add_day(1); // ok
cd.add_day(1); // error: cd is a const

Stroustrup/Programming/2015 3 Stroustrup/Programming/2015

Const member functions Classes

ish between functions that can modify (mutate) objects

and those that cannot (“const member functions”) What Inakes a gOOd interface‘?
Classiate { = Minimal
public:
e
int day() const; /I get (a copy of) the day = Cor
/% And no smaller
void add_day(int n); // move the date n days forward
/I 9%
b
const Date dx {2008, Month::nov, 4};
int d = dx.day(); // fine
dx.add_day(d); // error: can’t modify constant (immutable) date

As small as po;

= Type safe
Beware of confusing argument orders
Beware of over-general types (e.g., int to represent a month)

= Const correct

Stroustrup/Programming/2015 Stroustrup/Programming/2015

Classes

Essential operati
m Default construct;

No default if a s declared
= Copy constructor (defaults to: copy the member)
m Copy assignment (defaults to: copy the members)
m Destructor (defaults to: nothing)

Stroustrup/Programming/2015

Helper function

Date next_Sunday(const Date& d)

{
/I ac d using d.day(), d.month(), and d.year()
/I make new Date to return

}

Date next_weekday(const Date& d) {/* ... */}

bool operator==(const Date& a, const Date& b)

f
U

return a.year()=
&& a.month()==b.month()
&& a.day()==b.day();

const Date& a, const Date& b) { return !(

Stroustrup/Programming/2015

Operator overloading

You can define only existing operators
m Eg,t-* /%[0 ! &<<=>

ou can define operators only with their conventional number

of operands
= E.g., no unar (less than or equal) and no binary !

An overloaded operator must have at least one user-defined

type as operand

= int operator+(int,int); /[err u can’t overload built-in +
= Vector operator+(const Vector&, const Vector &); // ok

Advice (not language rule):

= Overload op y with their conventional meaning
=+ should be addition, * be multiplication, [] be access, () be call, etc.

Advice (not language rule):
= Don’t overload unless you really have to

Stroustrup/Programming/2015

7\
Interfaces and “helper functions”

Keep a class interface (the set of public functions)
minimal

= Simplifies understanding

= Simplifies debugging

= Simplifies maintenance

When we keep the class interface simple ar
minimal, we need extra “helper functions” outside
the class (non-member functions)
equality) , != (inequality)
= next_weekday(), next_Sunday()

Stroustrup/Programming/2015

Operator overloadin

You can define almost all C++ operators for a class or
enumeration operands
= That’s often called “operator overloading”
enum class Month {
jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec
g
5

Month operator++(Month& m) // prefix increment operator
7

an : Month(m+1);
return m;

1
’

Month m =
++m; // m becomes
++m; // m becomes jan

Stroustrup/Programming/2015

3/22/16

