C++ Inheritance

One Class “inherits”
Properties of Another

Tony Gaddis, Starting out with C++
Herbert Schildt, Teach Yourself C++

22

C++ Inheritance

Inheritance allows a hierarchy of classes to be
built.

Move from the most general
to the most specific

The class that is inherited is the base class.
The inheriting class is called the derived class.

A derived class inherits traits of the base class
&
adds properties that are specific to that class.

23

C++ Inheritance

Inheritance = the “Is @” Relationship

A poodle isadog insect

A car is a vehicle members

A tree is a plant

A rectangle is a shape Grasshopper

Class

A football player is a an athlete |™™*"

Base Class is the General Class
Derived Class is the Specialized Class

24

C++ Inheritance

(s)
(Triangle) (Quadrilateral >

f 4
(Right Triangle) (Rectangle)

5

{ Square)

DrawableObject
Point
/‘K
Rectangle Circle 3D-Point

- car
float speed:
float acceleration;
float horsePower;
float weight;
drag_racer stock_car
bool chuteDeployed: float frontMomentCenter:
float <hmeorfg;we float rearMomentCenter;
float springRate;
108
ede lass
v
N\
istream ostream
A /
ifstream 1ostream
fstream

ofstream

25

/Access Specification: Public\

C++ I n h e rita n Ce - Public members of Base are public

members of Derived
- Private members of Base remain
private members, but are inherited by the

° Sy A t ax Derived class.

i.e. “They are invisible to the

class B { \ Derived class /

int I; 5
pUbll?: . Class //Base
void Set I (int X) {I=X;} members
int Get I() {return I;}
) - Base Class
! Access
Specification D
\'4 Class //Derived
. . , members]
class D M{ int main() {
int J; D ob;
public: ob.Set J(10);
void Set J(int X) ob.Set _I(4);
— // ob.I = 8; Compile error!
{J = X;}
, cout << ob.Mul () << endl;
int Mul ()

return 0O;

{return J * Get I();} } // end main

// 3 * I 2> Compile error!

b

26

C++ Inheritance

* A base class in not exclusively “owned” by a
derived class. A base class can be inherited by
any number of different classes.

 There may be times when you want to keep a
member of a base class private but still permit
a derived class access to it.
SOLUTION: Designate the data as protected.

C++ Inheritance

Protected Data Inherited as Public

class Base {

protected:
int a, b;
public:
void Setab (int n, int m)
{ a =n; b =m;}

§a

e

Private members of the base class are always
private to the derived class regardless of the
access specifier.

e

class Derived: public Base {
int c;
public:
void Setc(int x) { ¢ = x;}
void Showabc () {

cout << a << M " < b <« ™

int main () {
Derived ob;

ob.Setab (1, 2);
ob.Setc (3);

ob.Showabc () ;
//ob.a = 5 NO! NO!

return 0O;

} // end main

W << ¢ << endl;

28

C++ Inheritance

* Public Access Specifier

— Private members of Base remain private members and are
inaccessible to the derived class.

— Public members of Base are public members of Derived

BUT

— Protected members of a base class are accessible to
members of any class derived from that base.

Protected members, like private members, are not
accessible outside the base or derived classes.

29

/\/

Private members of the base class are always private to
the derived class regardless of the access specifier

/\/

C++ Inheritance

But when a base class is inherited as protected,
public and protected members of the base class become
protected members of the derived class.

class Base {

protected:
int a, b;
public:
void Setab (int n, int m)
{ a =n; b =m;}

}r

class Derived: protected Base {

int c;
public:
void Setc(int x) { ¢ = x;}
void Showabc () {
cout << a << v ¢
}
i

int main () {
Derived ob;

//ob.Setab(1,2); ERROR
//ob.a = 5; NO! NO!

ob.Setc (3);
ob.Showabc () ;

return 0O;
} // end main

W << ¢ <L endl;

30

Private members of the base class are always

°
private to the derived class regardless of the C++ I n h e r I t a n C e
access specifier

Protected Access Specifier

— Private members of the base class are inaccessible
to the derived class.

— Public members of the base class become
protected members of the derived class.

— Protected members of the base class become
protected members of the derived class.

i.e. only the public members of the derived class are
accessible by the user application.

31

C++ Inheritance

* Constructors & Destructors

— When a base class and a derived class both have
constructor and destructor functions

* Constructor functions are executed in order of
derivation — base class before derived class.

e Destructor functions are executed in reverse order —
the derived class’s destructor is executed before the
base class’s destructor.

— A derived class does not inherit the constructors
of its base class.

C++ Inheritance

class Base {

public:
Base () { cout <<
~Base () {cout <<
i
class Derived public
public:
Derived () { cout

~Derived () { cout

b

“Constructor Base Class\n”;}
“Destructing Base Class\n”;}

Base {

<< Constructor Derived Class\n”;}
<< Destructing Derived Class\n”;}

int main () {
Derived ob;
return o;

-——— OUTPUT
Constructor
Constructor
Destructing
Destructing

Base Class
Derived Class
Derived Class
Base Class

33

C++ Inheritance

* Passing an argument to a derived class’s constructor

Class Base {
public:
Base () {cout << “Constructor Base Class\n”;}
~Base () {cout << ™ tucting Base Class\n”;}
i <
Class Derived : public Base { int main ()
int J; Derived Ob (10) ;
public: Ob.ShowdJ () ;
Derived (int X) { return 0;
cout << Constructor Derived Class\n”; } // end main
J = X;

}

~Derived () { cout << Destructing Derived Class\n”;}
void ShowJ () { cout << “WJ: ™ << J << ™\n”; }

34

C++ Inheritance

* Arguments to both Derived and Base Constructors

Class Base {
int I;
public:

Base (int Y)

~Base () {cout << “Destructing Base Class\n”;}

voilid ShowlI ()

Y
Class Derived
int J;
public:

Derived (int X)
cout << Constructor Derived Class\n”;

J = X;
}

~Derived () { cout << Destructing Derived Class\n”;}
void Showd ()

public Base {

{

cout << “Constructor Base Class\n”;
I =Y;}

int main () {

W <K< I << endl; } .
Derived Ob (10);

{ cout << \“I:

Ob.ShowI () ;
Ob.ShowdJ () ;
i return O;

B X
ase (X) } // end main

{ cout << << WJ:” << J << ™\n”; }

C++ Inheritance

Different arguments to the Base — All arguments to the Derived.

Class

Base {

int I;
public:

b

Base (int Y) {

cout << “Constructor Base Class\n”;

I =Y;}
~Base () {cout << “Destructing Base Class\n”;}
void ShowI () { cout << “I: ™ << I << endl; }

Class Derived : public Base {
int J;
public:
Derived(int X, int Y) : Base (Y) {
cout << Constructor Derived Class\n”;
J = X;

}

~Derived () { cout << Destructing Derived Class\n”;}

void ShowJ () { cout << << “WJ:” << J << ™\n”;

int main () {

Derived Ob(5,8);

Ob.ShowI () ;
Ob.Showd () ;
return 0;

} // end main

}

36

C++ Inheritance

* OK-If Only Base has Argument

Class Base {
int I;
public:

Base (int Y) {

cout << “Constructor Base Class\n”;

I =Y%;}
~Base () {cout << “Destructing Base Class\n”;}
void ShowI () { cout << |“I: ™ << I << endl; }

b

Class Derived : public Base {

int J;
public:
Derived (int X) : Base (X) {
cout << Constructor Derived Class\n”;
J = 0; // X not used here

}

~Derived () { cout << Destructing Derived Class\n”;}

void ShowJ () { cout << << “WJ:” << J << ™\n”;

int main () {

Derived 0Ob (10);

Ob.ShowI () ;
Ob.Showd () ;
return 0;

} // end main

}

37

C++ Inheritance

* Multiple Inheritance — Inheriting more than one base class

1. Derived class can be used as a base class for
another derived class
(multilevel class hierarchy)

2. A derived class can directly inherit more than
one base class. 2 or more base classes are
combined to help create the derived class

38

Bl

C++ Inheritance

* Multiple Inheritance

D2
1. Multilevel Class Hierarchy

— Constructor functions of all classes are called in order of derivation: B1, D1, D2
— Destructor functions are called in reverse order

2. When a derived class directly inherits multiple base classes...
— Access_Specifiers { public, private, protected} can be different

Constructors are executed in the order left to right, that the base classes are

specified.
— Destructors are executed in the opposite order.
Bl B2
class Derived Class Name: access Basel,
access Base’?,.. access BaseN
{
//.. body of class D

} end Derived Class Name

39

C++ Inheritance

Derived class inherits a class derived from another class.

class Bl {

int main() {
D2 0b(5,7,9);
Ob.ShowAll () ;

// GetA & GetB are still public here
cout << Ob.GetA() << ™ M

<< Ob.GetB() << endl;

return 0O;
} // end main

int A; Bl
public:
Bl(int Z2) { A = Z;}
int GetA() { return A; } D1
3
class D1 : public Bl {
int B; D2
public:
Dl(int Y, int Z) : Bl (Z2) { B = Y¥; }
void GetB() { return B; }
i
class D2 '« public D1 {
int C;
public:
D2 (int X, int ¥, int Z) : D1 (¥, Z))
void ShowAll () {
cout << GetA() << " M K GetB() <<

{ C

X; }

YW <K< C << endl; }

Because bases are inherited as public,

D2 has access to public elements of both B1 and D1

40

C++ Inheritance

class Bl {

Derived Class Inherits Two Base Classes

int A;
public:
Bl (int Z)
int GetA()
i
class B2 {
int B;
public:
B2 (int Y)

void GetB() { return B; } Ob.ShowAll () ;

b

{ A=12;} B1 B2

{ return A; }

D int main () {
D Ob(5,7,9);

{ B=Y; }

class D : public Bl, public B2 { return 0;

int C;
public:
D (int X,

} // end main

int ¥, int Z) : B1(Z), B2 (Y) { C = X; }

void ShowAll () {
cout << GetA () << " W™ K GetB() <« " "W K C < endl; }

}s

41

C++ Inheritance

* Inheritance Multiple Base Classes

(constructor and destructor)

class Bl {
public:

Bl () {cout << “Constructing Bl\n”;

14

~B1 () {cout << “Destructing B1\n”;

14

i
class B2 {
public:

B2 () {cout << “Constructing B2\n”;

14

~B2 () {cout << “Destructing B2\n”;

14

(3]

class D : public Bl, public B2 {
public:
D() {cout << “Constructing D\n”;
~D() {cout << “Destructing D\n”;

}

}

}

}

}

}

B1

B2

int main () {
D ob;
return 0;

} // end main

----OUTPUT----
Constructing Bl
Constructing B2
Constructing D
Destructing D
Destructing B2
Destructing Bl

42

C++ Inheritance

* Virtual Base Class

—PROBLEM: g -
The Base B is 0 0
inherited twice 2 |)
by D3. D3

— There is ambiguity!

— Solution: mechanism by which only one copy of B
will be included in D3.

C++ Inheritance

class B {

publlC: int main() {
int I; D3 ob;
I .
. . ob.I = 15; //must be virtual
class D1 : wvirtual public B { // else compile
public: // time error
. J = 21;
int J; ob.J
ob.K = 26;
I
class D2 : wvirtual public B { cout << “Product: ™
. << ob.product () << endl;
public:
return 0;
int K; } // end main

b

class D3 : public D1, public D2 {
int product {return I * J * K; }

b

C++ Inheritance

A Derived class does not inherit the constructors
of its base class.

Good Advice: You can and should include a call to
one of the base class constructors when you
define a constructor for a derived class.

If you do not include a call to a base class
constructor, then the default (zero argument)
constructor of the base class is called
automatically.

If there is no default constructor for the base
class, an error occurs.

C++ Inheritance

* If the programmer does not define a copy
constructor in a derived class (or any class), C++
will auto-generate a copy constructor for you.
(Bit-wise copy)

* Overloaded assighnment operators are not
inherited, but can be used.

* When the destructor for the derived class is
invoked, it auto-invokes the destructor of the
base class. No need to explicitly call the base
class destructor.

C++ Inheritance

* A derived class inherits all the member functions (and
member variables) that belong to the base class —
except for the constructor.

* |f a derived class requires a different implementation
for an inherited member function, the function may be
redefined in the derived class. (not the same
overloading)

— List its declaration in the definition of the derived class
(even though it is the same as the base class).

— Redefined function will have the same number and types
of parameters. l.e. signature is the same.

— Ok to use both (must use the base class qualifier to
distinguish between the 2)

C++ Inheritance

e Virtual Functions

— Background:

* A pointer declared as a pointer to a base class can also
be used to point to any class derived from that base.

* We can use a base pointer to point to a derived object,
but you can access only those members of the derived
object that were inherited from the base. The base
pointer has knowledge only of the base class; it knows
nothing about the members added by the derived

class.

* A pointer of the derived type cannot (should not) be
used to access an object of the base class.

48

C++ Inheritance

* Virtual Functions-
Background

class Base {

int X;

public:
volid SetX(int I) { X = I;}
int GetX() { return X:}

}s

class Derived public Base {

int Y;

public:
void Set¥(int I) { Y = I;}
int GetY () { return Y;}

}s

int main () {
Base *ptr;
Base BaseOb;

Derived DerivedOb;

ptr = &BaseOb;
ptr2>SetX (15);
cout <<“Base X: "
<< ptr2>GetX () << endl;

ptr = &DerivedOb;
ptr>SetX (29) ;

DerivedOb.SetY (42); // cannot use ptr
cout << “Derived Object X: “

<< ptr>GetX() << endl;
cout << “Derived Object Y: ™

<< DerivedOb.GetY () << endl;

return O;
} // end main

49

C++ Inheritance

* Virtual Functions

When the programmer codes “virtual” for a function, the programmer is
saying, “ 1 do not know how this function is implemented”.

Technique of waiting until runtime to determine the implementation of a
procedure is called late binding or dynamic binding.

A virtual function is a member function that is declared within a base class and
redefined by a derived class.

Demonstrates “One interface, multiple methods” philosophy that is
polymorphism.
“Run-time polymorphism”- when a virtual function is called through a pointer.

When a virtual function is redefined by a derived class,
the keyword virtual is not needed.

“A base pointer points to a derived object that contains a virtual function and
that virtual function is called through that pointer, C++ determines which

version of that function will be executed based upon the type of object being
pointed to by the pointer.” Schildt

50

C++ Inheritance

* Virtual Functions
— Exact same prototype (Override not Overload)
Signature + return type

— Can only be class members
— Destructors can be virtual; constructors cannot.
— Done at runtime!

— Late Binding: refers to events that must occur at run
time.

— Early Binding: refers to those events that can be
known at compile time.

51

C++ Inheritance

* Virtual Functions

class Base {
public:
int I;
base (int X) { I = X;}
virtual void func() {
cout << “Using Base version of func(): “;
cout << I << endl;

Polymorphic class
contains a virtual
function.

}
}:
class D1 ; public Base {
public:
D1 (int X) base (X) {}

void func() {
cout << Using D1’'s version of func(): “;

cout << I*I << endl;

int maint () {

}

Base *ptr;

Base BaseOb (10);
D1 D10b (10) ;
D2 D20b (10) ;

ptr = &BaseOb;

ptr>func(); // use Base’s func()
ptr = &D10b;

ptr=>func(); // use D1’s func()
ptr = &D20b;

ptr>func()’ // use D2’s func()

return 0;

}
}; --—-OUTPUT----
class D2 public Base { Using Base version of func(): 10
public: Using D1’s version of func(): 100
D2 (int X) base (X) {} Using D2’'s version of func(): 20
void func() {
cout << Using D2’'s version of func(): “;
cout << I+I << endl;
} If the derived class does not override a virtual function,
}; the function defined within its base class is used.

fo 4

C++ Inheritance

int main () {

class Area {
double diml, dim2;

public :
vold SetArea (double dl, double d2) {
diml = dil;
dim2 = d2;

}

void GetDim (double &dl, double &d2) {

dl = diml;
dz2 dim2;

}
virtual double GetArea() {

cout << “DUMMY DUMMY OVERRIDE function”;

return 0.0;

}
class Rectangle : public Area {
public :
double GetArea () {
double templ, temp2
GetDim (templ, temp2);
return templ * temp2;
}
}i
class Triangle
public :
double GetArea () {
double templ, temp2
GetDim (templ, temp?2);

: public Area {

return 0.5 templ * temp2;

b

Area *ptr;
Rectangle R;
Triangle T;

R.SetArea (3.3, 4.5);
T.SetArea (4.0, 5.0);

ptr = &R;
cout << “RECTANGLE_AREA: A
<< ptr—=>GetArea() << endl;

ptr = &T;
cout << “TRIANGLE_AREA: A
<< ptr—=>GetArea() << endl;

return O;
} // end main

When there is no meaningful action for a
base class virtual function to perform, the
implication is that any derived class
MUST override this function. C++ supports
pure virtual functions to do this.

Virtual double GetArea() = 0; // pure virtual

53

C++ Inheritance

e Virtual Functions

— When a class contains at least one virtual
function, it is referred to as an abstract class.

— An abstract class contains at least one function for
which no body exists,
so an abstract class exists mainly to be inherited.

— Abstract classes do not stand alone.

— If Class B has a virtual function called f(), and D1
inherits B and D2 inherits D1, both D1 and D2 can
override f() relative to their respective classes.

