Recursion, Structural
Recursion, Templated
Recursion, and Regular
Expressions

4/25/16

+ . . .
What is a Recursive Function?

= A function that calls itself

m What is required of a successful recursive function?
® base case(s)
= recursive call that:
= does a little bit of work
m delegates the rest of the work to itself

m Examples:
= factorial
= sequential sum
= tower of hanoi, fibonacci

+ .
What's a recursive structure?

m a.k.a. self referential structure
= linked list

= tree

+
Template Recursion?

m What about a truly N dimensional array?

= template <typename T, size_t N>
class NDGrid
{

public:
explicit NDGrid(size_t insize = kDefaultSize);
virtual ~NDGrid();

NDGrid<T,N-1>& operator[] (size_t x);
const NDGrid<T, N-1>& operator[] (size_t x) const;

void resize(size_t newSize);

size_t getSize const { return mElems.size() };

static const size_t kDefaultSize = 10;
private:

std::vector<NDGrid<T,N-1> > mElems;

+
Base Case template

= template <typename T>
class NDGrid<T, 1>

public:
explicit NDGrid(size_t inSize = kDefaultSize);
virtual ~NDGrid();

T& operator([] (size_t x);
const T& operator[] (size_t x) const;

void resize(size_t newSize);
size_t getSize() const { return mElems.size(); }
static const size_t kDefaultSize = 10;
private:
std::vector<T> mElems;

Templated Recursive Factorial
(maximum depth 255)

template<unsigned char f>
class Factorial
{
public:
static const unsigned long long val = (f * Factorial<f - 1>::val);

%

template<>
class Factorial<0>

public:
static const unsigned long long val = 1;
int main()
{
cout << Factorial<6>::val << endl;
return 0;

4/25/16

+
Templated Summation?

template<int x, int y>
class Sum
{
public:
static const unsigned long long val = ?;

template<int x>
class Sum<x,x>

public:
static const unsigned long long val = ?;
int main()
cout << Sum<6,100>::val << end];
return 0;

}

Regular Expressions

Based on slides from Dianna Xu

lle:

Bryn ollege
C8246 Programming Paradigm

+ . .
Basic Unix Commands

pwd passwd w

1s —a -1 |cat who

man more/ which
less

info chmod finger

cd head diff

cp tail wC

mv find echo

rm egrep sort

mkdir rmdir uniq

+
Unix Commands

:Display Files

cat report.c

cat >newfile
cat al.txt a2.txt
test.txt >newfile
more report.c

less filel file2

grep hello *.txt

{prints file on stdout, no
pauses}

{reads from stdin, writes
to 'newfile'}

{combine 3 files into 1}
{space for next page, b to
previous page, q to quit}
{in — go to the next file

:p — go to the previous
file}

{search *.txt files for
'hello'}

+
Regular Expressions

m A regular expression is a sequence of characters that represents a
pattern.

m Describe a pattern to match, a sequence of characters, not words,
within a line of text

m An expression that describes a set of strings
m Gives a concise description of the set without listing all elements

m There are usually multiple regular expressions matching the same set

+
The Structure of a RegEx

m Anchors are used to specify the position of the pattern in relation to a

line of text.

m Character Sets match one or more characters in a single position.

m Modifiers specify how many times the previous character set is

repeated.

4/25/16

+
The Anchor Characters: » and $

m "M is the starting anchor and '$' is the end anchor

m [f the anchor characters are not used at the proper end of the pattern,
they no longer act as anchors.

Pattern |Matches

AR “A” at the beginning of a line
A$ “A” at the end of a line

AN “AN” anywhere on a line

$A “$A” anywhere on a line

o “A” at the beginning of a line
$$ “$” at the end of a line

+
Match Any Character with .

m Single character matches itself

m The character ' by itself matches any character, except for the new-
line character.

m Example:
=S

+
Specify a Range of Characters []

m Use the square brackets to identify the exact characters.

m The pattern that will match any line of text that contains exactly one
number
= "[0123456789]%
= A[0-9]8
= [A-Za-z09]

m Character sets can be combined by placing them next to each other.

m "T[a-z][aeiou]

+
Exceptions in a Character Set

Pattern |Matches I
[0-9] Any number

["0-9] Any character other than a number

[-0-9] Any number or a "-"

[0-9-] Any number or a "-"

[*-0-9] Any character except a number or a "-"

[10-9] Any number or a "]"

[0-9]] Any number followed by a "]"

[0-9-7] {'%Zrly number, or any character between "9" and
[0-9\-a\]] | Any number, ora"-",a"a", ora"]”

+
Repeating Character Sets with *

m The special character "*' matches zero or more copies.
= '[0-9]*' : matches zero or more numbers

= '[0-9][0-9]*" : matches one or more numbers

P
[]

~#% - matches any number of "#'s" at the beginning of the line,
including zero.

MR

+
Named Classes |
[:alnum:] ~ Alphanumeric characters: \w == [[:alnum:]], \W ==[*[:alnum:]] I

[:alpha:] Alphabetic characters: [:lower:] and [:upper:].
[:blank:] Blank characters: space and tab.

Control characters. In ASCII, these characters have octal codes 000
through 037, and 177 ('DEL).

[:digit:] 0123456789
[:graph:] Graphical characters: [:alnum:] and [:punct:]

[:entrl:]

[:lower:] Lower-case letters

[:print:] Printable characters

[:punct:] Punctuation characters

[:space:] tab, newline, vertical tab, form feed, carriage return, and space
[:upper:] Upper-case letters

[:xdigit:] Hexadecimal digits:0123456789ABCDEFabcdef

+
Alternation and Grouping

mOr—|

= gray|grey > gray, grey
m Grouping — parentheses

= gr(ale)y > gray, grey

4/25/16

+
Quantification

me? 0 or 1 occurrence of e
m colou?r = color, colour

me* 0 or more occurrence of e
m go*gle > ggle, gogle, google, gooogle ...

me+ 1 or more occurrence of e
= got+gle > gogle, google ... but NOT ggle

me{n} n occurrences of e
me{n,} n or more occurrences of e

me{n,m} n-m occurrences of e

+
Which Regex?

= Vowels
m No letters

m Either a or b, 1 or more times
m b, abba, baaaba

m 5 consecutive lower-case letters
m All English terms for an ancestor

m father, mother, grand father, grand mother, great grand father, great grand
mother, great great grand father ...

+
Others

[N matches any character

[matches the start of a line

] matches the end of a line

m\< \> matches the beginning and the end of a word

=\ escapes any special characters, i.e. if you actually

want to match ., must match \ .

+
Which Regex?

m 3 letter string that ends with “at”

m 3 letter string that ends with “at” , except for “bat”
= “hat” or “cat” ,butonly if first thing on a line

m words with no vowels

m Floating point number

+
Back Reference

= \n matches the expression previously
matched by the nth parenthesized subexpression

m Find all matching html title tags, h1, h2 ... h6 (i.e. <hl> text </h1>)
®m <h[1-6]>.*</h[1-6]>
® <\ (h[1-6]\)>.*</\1>

= nis indexed from 1

+
grep, egrep and regex

m grep supports traditional Unix regex, while egrep supports full posix
extended regex, and is therefore more powerful.

m grep —¢ is equivalent to egrep

m When giving regex at command line, must quote entire expression so
that the shell will not try to parse and interpret the expression

m Use single quotes instead of double quotes

4/25/16

+
grep/egrep

= Will find all lines that “contains” the matching regex, that often
defeats expressions with *

m Want to find lines with no digits in temp.txt
= % egrep '[*0-9]' temp.txt
%543

This is many 000000000

m Usegrep -v '[0-9]' temp.txt

+
grep/egrep Flags

m-c print matching line count instead

m-i ignore cases

m-n prefix each output line with line number

m-r recursively match all files in directory

n-v print non-matching lines, i.e. lines that
do not contain the matching pattern

= -o prints only the matching part of the lines.

+ .
egrep Exercises

m lines with characters that are not letters

m lines with exactly 6 characters

m lines with at least 10 characters

m Jines with even number of characters

m lines that end with a letter

m lines with 3 a’s

m lines with 2 consecutive 7s

m lines with a 3 letter word

m lines with a word of at least 6 letters

m lines containing a repeated word of 2 letters separated by a space, i.e. "55

m lines containing 9 consecutively digits

m lines containing 3 repeated digits, not necessarily consecutive, i.e "3 3 3",

"555","666" or "abb6c6d"
m lines with exactly 2 words

