
1/22/2018

1

CMSC 246 Systems
Programming

Spring 2018
Bryn Mawr College

Instructor: Deepak Kumar

CMSC 246 Systems
Programming

1/22/2018

2

Go to class web page…

3

Goals

• Learn Linux (CLI, not WIMP!)

• Learn C

• Learn Linux tools

4

1/22/2018

3

5

Evolution of C

6

Algol60
Designed by an international
committee, 1960

CPL
Combined Programming Language
Cambridge & Univ. of London, 1963
Was an attempt to bring Algol down
To earth and retail contact with the
Realities of an actual computer.
Features:
• Big
• Too many features
• Hard to learn
• Intended for numerical as well as

non-numerical applications

BCPL
Basic CPL
Designed by Martin Richards, Cambridge 1967
Intended as a tool for writing compilers.
Designed to allow for separate compilation.
Features:
• Typeless language (only binary words)
• Introduced static variables
• Compact code
• Provodes access to address of data objects
• Stream-based I/O

B
Designed by Ken Thompson, Bell Labs 1970
A true forerunner of C
Features:
• Typeless (with floating pt. capabilities
• Designed for separate compilation
• Easily implementable
• Pre-processor facility
• Expensive library

1/22/2018

4

Evolution of C

7

Algol60
Designed by an international
committee, 1960

CPL
Combined Programming Language
Cambridge & Univ. of London, 1963
Was an attempt to bring Algol down
To earth and retail contact with the
Realities of an actual computer.
Features:
• Big
• Too many features
• Hard to learn
• Intended for numerical as well as

non-numerical applications

BCPL
Basic CPL
Designed by Martin Richards, Cambridge 1967
Intended as a tool for writing compilers.
Designed to allow for separate compilation.
Features:
• Typeless language (only binary words)
• Introduced static variables
• Compact code
• Provodes access to address of data objects
• Stream-based I/O

B
Designed by Ken Thompson, Bell Labs 1970
A true forerunner of C
Features:
• Typeless (with floating pt. capabilities
• Designed for separate compilation
• Easily implementable
• Pre-processor facility
• Expensive library

C
1971-72
Developed at Bell Laboratories by
Ken Thompson, Dennis Ritchie, and others.
C is a by-product of UNIX.
Ritchie began to develop an extended version of B.
He called his language NB (“New B”) at first.
As the language began to diverge more from B,
he changed its name to C.
The language was stable enough by 1973 that
UNIX could be rewritten in C.

K&R C
Described in Kernighan and Ritchie,
The C Programming Language (1978)
De facto standard
Features:
• Standard I/O Library
• long int data type
• Unsigned int data type
• Compound assignment operators

C89/C90
ANSI standard X3.159-1989
Completed in 1988
Formally approved in December 1989
International standard ISO/IEC 9899:1990
A superset of K&R C
Heavily influenced by C++, 1979-83
• Function prototypes
• void pointers
• Modified syntax for parameter declarations
• Remained backwards compatible with K&R C

C99
International standard ISO/IEC 9899:1999
Incorporates changes from Amendment 1 (1995)
Features:
• Inline functions
• New data types (long long int, complex, etc.)
• Variable length arrays
• Support for IEEE 754 floating point
• Single line comments using //

Onwards to C11…

Properties of C

• Low-level

• Small

• Permissive

8

1/22/2018

5

Strengths of C

• Efficiency

• Portability

• Power

• Flexibility

• Standard library

• Integration with UNIX

9

Weaknesses of C

• Programs can be error-prone.

• Programs can be difficult to understand.

• Programs can be difficult to modify.

10

1/22/2018

6

Effective Use of C

• Learn how to avoid pitfalls.

• Use software tools to make programs more reliable.

• Take advantage of existing code libraries.

• Adopt a sensible set of coding conventions.

• Avoid “tricks” and overly complex code.

• Stick to the standard.

• Try and adapt the good habits from programming in Java!

• MAKE SURE YOU WRITE YOUR OWN CODE.

11

First C Program: Hello, World!

#include <stdio.h>

int main(void) {

printf(“Hello, World!.\n");

return 0;

}

• This program might be stored in a file named hello.c.

• The file name doesn’t matter, but the .c extension is often required.

12

1/22/2018

7

First C Program: Hello, World!

// Name: Xena W. Princess
// Purpose: My first C Program, prints: Hello, World!
// Written on January 22, 2018

#include <stdio.h>

int main(void) {
printf(“Hello, World!.\n");
return 0;

} // end of main()

• This program might be stored in a file named hello.c.

• The file name doesn’t matter, but the .c extension is often required.

13

Compilation Process

[xena@codewarrior cs246]$ gcc hello.c

[xena@codewarrior cs246]$./a.out
Hello, World!
[xena@codewarrior cs246]$

Source code
(hello.c)

C Compiler
(gcc hello.c)

Executable/Object Code
(a.out)

14

1/22/2018

8

Excursion to Linux

15

Learn to use: pwd, ls, cd, cp, cat/less/more, mv

Compilation Process – GNU C Compiler

[xena@codewarrior cs246]$ gcc –o hello hello.c

[xena@codewarrior cs246]$./hello
Hello, World!
[xena@codewarrior cs246]$

Source code
(hello.c)

C Compiler
(gcc hello.c)

Executable/Object Code
(a.out)

16

1/22/2018

9

Compilation Process

Compilation is a 3-step process

1. Preprocessing
Source code commands that begin with a # are preprocessed. E.g.,

#include <stdio.h>

2. Compiling
Source code is translated into object code (m/c language)

3. Linking
All libraries/modules used by the program are linked to produce an executable object
code

Preprocessing is normally integrated into the compiler. Linking is done by a separate
program/command. The gcc command, in its simplest form, integrates all three steps.

17

Compilation Process

Compilation is a 3-step process

Source code
(hello.c)

C Compiler
(gcc hello.c)

Preprocesses and
Compiles source

code

Executable/Object Code
(a.out)Object Code

(hello.o)

Linker

Links all needed
object files to

produce an
executable file

(a.out)

Source code
(hello.c)

C Compiler
(gcc hello.c)

Executable/Object Code
(a.out)

The gcc command, in its simplest form, integrates all three steps.

18

1/22/2018

10

C Program Structure (for now)

directives

int main(void) {

statements
}

19

#include <stdio.h>

int main(void) {

printf(“Hello, World!.\n");

return 0;

} // end of main()

C Program Structure (for now)

directives

int main(void) {

statements
}

20

#include <stdio.h>

int main(void) {

printf(“Hello, World!.\n");

return 0;

} // end of main()

• Before a C program is compiled, it is first edited by a preprocessor.

• Commands intended for the preprocessor are called directives.

• <stdio.h> is a header containing information about C’s standard
I/O library.

1/22/2018

11

main()

• The main() function is mandatory.

• Main() is special: it gets called automatically when the program is
executed.

• main returns a status code; the value 0 indicates normal program
termination.

• If there’s no return statement at the end of the main function,
many compilers will produce a warning message.

21

Printing Strings

• The statement

printf("To C, or not to C: that is the question.\n");

could be replaced by two calls of printf:

printf("To C, or not to C: ");

printf("that is the question.\n");

• The new-line character can appear more than once in a string literal:

printf("Brevity is the soul of wit.\n --Shakespeare\n");

22

1/22/2018

12

Comments – Two styles /*…*/ or //

• Begins with /* and end with */.

/* No comment */

• Comments can also be written in the following way:

// No comment

• Advantages of // comments:
• Safer: there’s no chance that an unterminated comment will accidentally

consume part of a program.
• Multiline comments stand out better.

23

Another Program
(variables, assignment, formatted output)
File: small.c
#include <stdio.h>

int main(void) {

int A, B, C;

A = 24;
B = 18;
C = A + B;

printf(“C = %d\n”, C);
} // main()

[xena@codewarrior cs246]$ gcc –o small small.c
[xena@codewarrior cs246]$./small
C = 42
[xena@codewarrior cs246]$

24

1/22/2018

13

Printing the Value of a Variable
• %d works only for int variables; use %f to print a float variable

• By default, %f displays a number with six digits after the decimal point.

• To force %f to display p digits after the decimal point, put .p between %
and f.

• To print the line

Profit: $2150.48

use the following call of printf:

printf("Profit: $%.2f\n", profit);

• There’s no limit to the number of variables that can be printed by a single
call of printf:
printf("Height: %d Length: %d\n", height, length);

25

Input

• scanf() is the C library’s counterpart to printf.

• Syntax for using scanf()

scanf(<format-string>, <variable-reference(s)>)

• Example: read an integer value into an int variable data.

scanf("%d", &data); //read an integer; store into data

• The & is a reference operator. More on that later!

26

1/22/2018

14

Reading Input

• Reading a float:

scanf("%f", &x);

• "%f" tells scanf to look for an input value in float format (the
number may contain a decimal point, but doesn’t have to).

27

Standard Input & Output Devices

• In Linux the standard I/O devices are, by default, the keyboard for input,
and the terminal console for output.

• Thus, input and output in C, if not specified, is always from the standard
input and output devices. That is,

printf() always outputs to the terminal console

scanf() always inputs from the keyboard

• Later, you will see how these can be reassigned/redirected to other
devices.

28

1/22/2018

15

Program: Convert Fahrenheit to Celsius

• The celsius.c program prompts the user to enter a Fahrenheit
temperature; it then prints the equivalent Celsius temperature.

• Sample program output:

Enter Fahrenheit temperature: 212

Celsius equivalent: 100.0

• The program will allow temperatures that aren’t integers.

29

Program: Convert Fahrenheit to Celsius
ctof.c

#include <stdio.h>

int main(void)

{

float f, c;

printf("Enter Fahrenheit temperature: ");

scanf("%f", &f);

c = (f – 32) * 5.0/9.0;

printf("Celsius equivalent: %.1f\n", c);

return 0;

} // main() Sample program output:

Enter Fahrenheit temperature: 212

Celsius equivalent: 100.0

30

1/22/2018

16

Improving ctof.c

Look at the following command:

c = (f – 32) * 5.0/9.0;

First, 32, 5.0, and 9.0 should be floating point values: 32.0, 5.0, 9.0

Second, by default, in C, they will be assumed to be of type double
Instead, we should write

c = (f – 32.0f) * 5.0f/9.0f;

What about using constants/magic numbers?

31

Defining constants - macros
#define FREEZING_PT 32.0f

#define SCALE_FACTOR (5.0f/9.0f)

So we can write:

c = (f – FREEZING_PT) * SCALE_FACTOR;

When a program is compiled, the preprocessor replaces each macro by the value that it
represents.

During preprocessing, the statement

c = (f – FREEZING_PT) * SCALE_FACTOR;

will become

c = (f – 32.f) * (5.0f/9.0f);

This is a safer programming practice.

32

1/22/2018

17

Program: Convert Fahrenheit to Celsius
ctof.c
#include <stdio.h>

#define FREEZING_PT 32.0f
#define SCALE_FACTOR (5.0f/9.0f)

int main(void)
{

float f, c;

printf("Enter Fahrenheit temperature: ");
scanf("%f", &f);

c = (f – FREEZING_PT) * SCALE_FACTOR;

printf("Celsius equivalent: %.1f\n", c);

return 0;
} // main() Sample program output:

Enter Fahrenheit temperature: 212

Celsius equivalent: 100.0

33

Identifiers

• Names for variables, functions, macros, etc. are called identifiers.

• An identifier may contain letters, digits, and underscores, but must
begin with a letter or underscore:

times10 get_next_char _done

It’s usually best to avoid identifiers that begin with an underscore.

• Examples of illegal identifiers:

10times get-next-char

34

1/22/2018

18

Identifiers

• C is case-sensitive: it distinguishes between upper-case and lower-case
letters in identifiers.

• For example, the following identifiers are all different:
job joB jOb jOB Job JoB JOb JOB

• Many programmers use only lower-case letters in identifiers (other than
macros), with underscores inserted for legibility:
symbol_table current_page name_and_address

• Other programmers use an upper-case letter to begin each word within an
identifier:
symbolTable currentPage nameAndAddress

• C places no limit on the maximum length of an identifier.

35

Keywords
• The following keywords can’t be used as identifiers:
auto enum restrict* unsigned

break extern return void

case float short volatile

char for signed while

const goto sizeof _Bool*

continue if static _Complex*

default inline* struct _Imaginary*

do int switch

double long typedef

else register union

• Keywords (with the exception of _Bool, _Complex, and _Imaginary)
must be written using only lower-case letters.

• Names of library functions (e.g., printf) are also lower-case.

36

1/22/2018

19

If and Switch statements in C

• A compound statement has the form
{ statements }

• In its simplest form, the if statement has the form

if (expression) compound/statement

• An if statement may have an else clause:

if (expression) compound/statement else compound/statement

• Most common form of the switch statement:

switch (expression) {

case constant-expression : statements
…

case constant-expression : statements
default : statements

}

37

Arithmetic Operators

• C provides five binary arithmetic operators:
+ addition
- subtraction
* multiplication
/ division
% remainder

• An operator is binary if it has two operands.

• There are also two unary arithmetic operators:
+ unary plus
- unary minus

38

1/22/2018

20

Logical Expressions

• Several of C’s statements must test the value of an expression to see
if it is “true” or “false.”

• In many programming languages, an expression such as i < j would
have a special “Boolean” or “logical” type.

• In C, a comparison such as i < j yields an integer: either 0 (false) or 1
(true).

39

Relational Operators

• C’s relational operators:
< less than
> greater than
<= less than or equal to
>= greater than or equal to

• C provides two equality operators:
== equal to
!= not equal to

• More complicated logical expressions can be built from simpler ones by
using the logical operators:
! logical negation
&& logical and

These operators produce 0 (false) or 1 (true) when used in expressions.

40

1/22/2018

21

Logical Operators

• Both && and || perform “short-circuit” evaluation: they first evaluate the
left operand, then the right one.

• If the value of the expression can be deduced from the left operand alone,
the right operand isn’t evaluated.

• Example:
(i != 0) && (j / i > 0)

(i != 0) is evaluated first. If i isn’t equal to 0, then (j / i > 0) is
evaluated.

• If i is 0, the entire expression must be false, so there’s no need to evaluate (j
/ i > 0). Without short-circuit evaluation, division by zero would have
occurred.

41

Relational Operators & Lack of Boolean
Watch out!!!
• The expression

i < j < k

is legal, but does not test whether j lies between i and k.

• Since the < operator is left associative, this expression is equivalent to

(i < j) < k

The 1 or 0 produced by i < j is then compared to k.

• The correct expression is i < j && j < k.

42

1/22/2018

22

Loops

• The while statement has the form

while (expression) statement

• General form of the do statement:

do statement while (expression) ;

• General form of the for statement:

for (expr1 ; expr2 ; expr3) statement

expr1, expr2, and expr3 are expressions.

• Example:

for (i = 10; i > 0; i--)

printf("T minus %d and counting\n", i);

• In C99, the first expression in a for statement can be replaced by a declaration.

• This feature allows the programmer to declare a variable for use by the loop:

for (int i = 0; i < n; i++)

…

43

STOP!!

44

1/22/2018

23

Acknowledgements

Some content from these slides is based on the book, C Programming –
A Modern Approach, By K. N. King, 2nd Edition, W. W. Norton 2008.

Some content is also included from the lecture slides provided by Prof.
K. N. King. Thank You!

45

