
CS246

Unix: grep

C: pass by value, references
March 4

grep

• One of the most used Unix utilities

• Idea: from standard input (or file) find lines that contain a “regular expression”

• or just a string

• Example

• LS -R — recursively list all files

• ls -R | grep c

• finds all files with the letter c

• grep Darcy ~/public/206/a4/janeausten.txt

• find all lines that contain “Copperfield” in my dickens collection

• really long so

• grep Darcy ~/public/206/a4/janeausten.txt | wc

2

Global Regular Expression Print

the RE part of gREp
• Regular expression

• a way of allowing for broader classes of matches

• Anchors

• ^ the beginning of a line

• show only directories in ls

• ls -l | grep ^d

• $ the end of the line

• show all files in ls that end in s

• ls -l | grep s$

3

the RE part of gREp
• . — any single character

• find all lines containing d, two characters, y

• grep “d..y” Public/206/a4/janeausten.txt

• [] a character group — match to any single character in group

• find all lines containing d, a vowel, y

• grep “d[aeiou]y” Public/206/a4/janeausten.txt

• find all lines containing d, a letter, y

• grep “d[a-z]y” ..

• Same but case insensitive

• grep “[dD][a-zA-Z][yY]” …

• grep -i “d[a-z]y” …

4

the RE part of gREp
• Quantifiers

• Apply to the previous character (or group)

• * — match to 0 or more

• .* == match to 0 or more occurrences of any letter

• d.*y matches dy, day, dly, d_y, duly, daddy, …

• ? — 0 or 1

• a? == match to a string that has 0 or 1 a

• da?y matches dy, day

• + — 1 or more

• [a-z]+ one or more instances of any lower case letter

• d[a-z]+y matches day,dly, daddy, …

5

grep — escapes and quotes
• suppose you want to find a line containing . *, or +, or [, or any other character used

specially in regular expressions

• precede that char with \

• sometimes called the “escape character”

• Find all lines containing the character “.”

• grep “\.” dickens.txt

• It is often important — and never wrong — to put REs in quotes

• grep “\.” dickens.txt — lines containing a .

• grep \. dickens.txt — every line in the file

• without quotes characters can get interpreted by the shell

• grep * dickens.txt

• the * is interpreted by the shell to be a filename expansion operator

• e.g. grep dickens *.txt

6

LAB from Monday
• Write your own implementation of strcpy

• void strcpy(int destLen, char dest[destLen], char
source[]);

7

void strcpyGT(int ll, char tgt[ll], char src[]) {

 int i = 0;

 for (; i < ll - 1 && src[i] != '\0'; i++) {

 tgt[i] = src[i];

 }

 tgt[i] = ‘\0';

}

int main(int argc, char const *argv[]) {

 char line[LINE_LEN];

 while (fgets(line, LINE_LEN, stdin) != NULL) {

 char copy[LINE_LEN];

 for (int i = 0; i < LINE_LEN; i++) copy[i] = 'z';

 strcpyGT(LINE_LEN, copy, line);

 printf("%d %d %s %s>>>\n", strlen(line), strlen(copy), line, copy);

 }

 return 0;

}

What happens without this???

Homework 3
• posted on class website

• timing — see code in timer.c for today’s lecture for 3(!)

different ways of timing

8

Pass by value vs Pass by Reference
• Function Calls

• Pass by value

• make a copy and work with

that

• changes inside function do

not affect outside

• Pass by reference

• Work with the same exact thing

• Change inside function change

the outside
9

PbV or PbR
• Which

• Java

• PbV on primitive types

• PbR on objects

• C

• PbV on basically everything

• BUT there is an catch

10

PbV or PbR
• Why do I care

• The effect of changing values in functions

• javascript “vars” are effectively PbR

• Speed & memory

• PbR faster and more memory efficient

• PbV “safer”?

• NO side effect programming

11

& operator
• the “address” operator

• The memory address of

the variable

• Using & can really observe

PbV in action

• Program at right one global
variable and a function with
no args

• What is the output?

12

file: p1.c

int gi = 5;

void t()

{

 printf("TF %d %d\n", gi, &gi);

 gi = 7;

 printf("TF2 %d %d\n", gi, &gi);

 return;

}

int main(void)

{

 printf("TM %d %d\n", gi, &gi);

 t();

 printf("TM2 %d %d\n", gi, &gi);

}

Show the
address in
memory as an
integer

PbV
• Output here?

13

file: p2.c

void t()

{

 printf("TF %d %d\n", gi, &gi);

 gi = 7;

 return;

}

int main(void)

{

 int gi = 5;

 printf("TM %d %d\n", gi, &gi);

 t();

 printf("TM2 %d %d\n", gi, &gi);

}

PbV
• Finally, passing a

variable

• memory location

of gi in t is
different from in
main

• Visible

manifestation of
PbV

14

file p3.c

void t(int gi)

{

 printf("TF %d %d\n", gi, &gi);

 gi = 7;

 printf("TF2 %d\n", gi, &gi);

 return;

}

int main(void)

{

 int gi = 5;

 printf("TM %d %d\n", gi, &gi);

 t(gi);

 printf("TM2 %d\n", gi);

}

Return
• is also by value

• Must be else you would

be getting a memory
location from a stack
frame that no longer
exists

15

file: p4.c

int t(int gi)

{

 printf("TF %d %d\n", gi, &gi);

 gi = 7;

 printf("TF2 %d %d\n", gi, &gi);

 return gi;

}

int main(void)

{

 int gi = 5;

 printf("TM %d %d\n", gi, &gi);

 int gii = t(gi);

 printf("TM2 %d %d\n", gii, &gii);

}

Pointer types
• int *p;

• holds a pointer to an integer

• this declaration is not pointing to

anything

• must point to a thing of the type

• All pointers are exactly the same size

• Actually all pointers are exactly the same

• So why the restriction that the pointer

MUST point to something of it declared
type?

16

int gi = 5;

int *pgi1 = &gi;

int* pgi2 = &gi;

int * pgi3 = &gi;

Create a variable, gi, then
create two variables that hold
a pointer to gi.

VSC prefers first form

* Operator
• * is also called the

“indirection” operator

• IMPORTANT

• * operator is not * in
type declarations and is
not multiply.

• horrific

• * operator works ONLY on

pointer types

• compile error

• when you have a pointer

• use * to mean “the value

of the thing pointed to”

• This is logic behind

calling * an “indirection”
operator

17

file: p5.c

int main(void)

{

 int giv = 5;

 int *gip = &giv;

 printf("TM1%5d%12d%12d\n", giv, &giv, gip);

 *gip = 7; // set value into the pointer

 printf("TM2%5d%12d%12d%5d\n", giv, &giv, gip, *gip);

 // set value into the memory address

 //parens are required

 *(&giv) = 9;

 printf("TM2%5d%12d%12d%5d\n", giv, &giv, gip, *gip);

}

Finally, PbR in C
• To get Pass by Reference

in C

• pass a pointer

• use indirection

operator to set the
value into pointer

• Used this in HW1!

• scanf

18

file: p6.c

void t(int *gip) {

 printf("TT1%5d%12d\n", *gip, gip);

 *gip = 7;

 printf("TT1%5d%12d\n", *gip, gip);

}

int main(int argc, char const *argv[])

{

 int giv = 3;

 printf("TM1%5d%12d\n", giv, &giv);

 t(&giv);

 printf("TM2%5d%12d\n", giv, &giv);

 return 0;

}

Pointer and Casting
• Because all pointers are the

same you can freely cast
pointers to other types.

• Setting/reading — not so

much

• Consider java

• String s = new String(“A”); 
Integer i = (Integer)s;

• kind of legal to do but a

bad idea

19

file: p7.c

int main(void)

{

 int iint = 5;

 int *intp = &iint;

 printf("T1int%12d%12d\n", iint, intp);

 *intp = 999999;

 printf("T2int%12d%12d\n", iint, intp);

 char *chrp = (char *)intp;

 *chrp = 'a';

 printf("T3chr%12c%12d\n", *chrp, chrp);

 printf("T3int%12d%12d\n", *intp, intp);

}

Pointers and arrays
• Arrays are already

pointers!

• So with array you

are doing PbR

20

file: p10.c

void parray(char id, int asz, int arr[asz]) {

 for (int i = 0; i < 10; i++)

 printf("%1c%3d%12d%12d%5d\n", id, i,
arr, &arr[i], arr[i]);

}

int main(void)

{

 int a[10];

 for (int i = 0; i < 10; i++)

 a[i] = (i*29) % 17;

 char id = 'M';

 for (int i = 0; i < 10; i++)

 printf("%1c%3d%12d%12d%5d\n", id, i, a,
&a[i], a[i]);

 parray('A', 10, a);

}

Lab — Regular Expressions
• Write regular expressions you could use in grep to find

• Note that to actually use some of these REs with grep, use quotes

• all lines with the character z

• all lines with at least 2 instances of the character z

• all lines with 2 z’s with at least one character between

• so pizza would not match but pizzaz would

• all lines that have at least 2 upper case vowels

• all lines that have 2 upper case vowels (but not I) separated by 10 more more

characters (an upper case vowel could be one of intervening characters.

• If you use /home/gtowell/Public/206/a4/dickens.txt for a test file then these are the

number of lines that each grep should find

• z: 3909, 2 z’s: 976, 2 z’s with a separator: 143, 2 UC vowels: 23877, 2 UC vowels,

but not I, separated by at least 10 chars: 2967

• All I need is the 5 regular expressions, but showing the grep commands is OK also. Do

NOT send complete results of each grep.
21

