
CS246

Unix: review

C: strtok, pointers
March 11

Lab
• Write a Makefile that

has 2 rules

• Rule 1. compile one

of the c programs
you wrote for
homework 2

• Rule 2. a “clean”

rule which deletes
a.out and any other
executables in the
directory

2

#makefile

cc

binsearch: binsearch.c

 gcc -o binsearch binsearch.c

clean:

 rm binsearch

UNIX: files and directories
• cd, pwd

• ls , ls -lart

• l — long

• a — all

• filenames that start with . are otherwise hidden

• t — sort by time

• r — reverse order

• absolute and relative file addressing

• / and the UNIX file structure

• ln — hard and soft links 3

Seeing files
• cat

• head, tail

• less — you can pipe into less, you cannot pipe out because it

does not write to stdout

• wc

4

IO redirection
• aaa < bbb.txt

• for the executable aaa, use the contents of file bbb.txt as stdin rather than the keyboard

• aaa > outfile.txt

• for the executable aaa put the output to stdout into the file outfile.txt rather than to the
console, REPLACE outfile.txt if it exists

• aaa >> outfile.txt

• for the executable aaa put the output to stdout into the file outfile.txt rather than to the

console, APPEND to outfile.txt if it exists

• aaa > outfile.txt 2>errfile.txt

• as above, but also put output to stderr into errfile.txt rather than the keyboard

• Importantly, in all of these cases the executable aaa does not know anything about this
redirection

5

Pipes
• Kind of like redirection but without the files

• |

• aaa | bbb

• aaa and bbb must both be executables

• take the output (to stdout) of aaa and rather than sending it

to the console make in the input (on stdin) to bbb

• Pipe sequences can be long

• aaa | bbb | ccc | ddd | eee …

6

Sort and grep
• sort

• a file or a pipe

• lots of options

• grep — find lines in txt

• Regular expressions

• letters

• .

• [abc]

• *, ? (and +)

• [abc]* vs .*

• ^ $

7

Command Line Args
• int main(int argc, char
const *argv[])

• argc	—	the	c	is	for	count

• the	number	of	args	on	the	command	
line	PLUS	one

• execut aaa bbb ccc

• argc	=	4

• the	count	includes	the	
executable

• argv	—	the	v	is	for	value

• the	actual	values	of	the	command	
line	args	STARTING	WITH	THE	
executable	name 8

file: cla.c

#include <stdio.h>

int main(int argc, char const *argv[])

{

 for (int i = 0; i < argc; i++) {

 printf("%d %s\n", i, argv[i]);

 }

 return 0;

}

UNIX> gcc -o cla cla.c

UNIX> cla aaa bbb ccc

0 cla

1 aaa

2 bbb

3 ccc

Command Line Args
• char *argv[] ??????

• Recall array in C is just a pointer

• 2d array, still only a pointer

• int arr[5][3]

• arr[0]

• &(arr[0][0])

• all the same thing

• for an mD array, arr[N] pointer to the start of row N

• so a 2d array is an array of 5 pointers to arrays every one of which is of size 3

• But if you do not know the second dimension of 2d array you have an array of pointers to arrays.

• See, for example, p4.c

• That is what you have in *argv[]

• argc gives size of the [] array.

• In this case you may not have a single contiguous block of memory rather you have a block of

length argc containing pointers but each pointer could be to somewhere else.

• Q: how do we get away with not knowing length of the pointed to arrays in argv 9

file: p4.c

int main()

{

 int * a[2];

 int ab[5] = {0,1,2,3,4};

 a[0]=ab;

 int ac[9] = {0,1,2,3,4,5,6,7,8};

 a[1]=ac;

}

Arrays in Pictures

10

#define
• C compilation can be

concieved of as in 3 steps

• Preprocess

• compile

• link

• Preprocess

• finds defines and

substitutes into the code

• VERY different from

• static final vars in Java

11

cat p5.c

#define TWO 2

#define NINE 9

#define FIVE 5;

int main()

{

 int * a[TWO];

 int ab[FIVE] = {0,1,TWO,3,4};

 a[0]=ab;

 int ac[NINE] = {0,1,TWO,3,4,FIVE,6,7,NINE};

 a[TWO-1]=ac;

}

[gtowell@powerpuff L08]$ gcc -E p5.c

int main()

{

 int * a[2];

 int ab[5;] = {0,1,2,3,4};

 a[0]=ab;

 int ac[9] = {0,1,2,3,4,5;,6,7,9};

 a[2 -1]=ac;

}

printf and fprintf
• printf is just a shortcut for fprintf

• f prefix is short for File

• printf(“formatter”, arg, arg, …)

• fprintf(FILE*, “formatter”, arg, arg, …)

• FILE*

• stdout, stderr

• fopen(“AAA”, “w”)

• “formatter”

• %d, %f, %c, %s

• \n

12

C Strings
• DO NOT Exist

• But, by convention, strings:

• array of type char

• end of string signaled by \0

• lots of support in C for “strings”

• #include <string.h>

• printf “%s”

• Most/all of string.h is written in C

• Full definitions are all over the

internet

13

file: mystrlen.c

#include <stdio.h>

int strlenP(const char *strPtr) {

 int i = 0;

 while (*strPtr != '\0') {

 strPtr++; i++;

 }

 return i;

}

int strlenA(const char strArr[]) {

 int i = 0;

 while (strArr[i] != '\0') { i++; }

 return i;

}

int main(int argc, char const *argv[]) {

 for (int i = 0; i < argc; i++) {

 printf("%d %d %s\n", strlenP(argv[i]),
strlenA(argv[i]), argv[i]);

 } return 0; }

Java: “aaa,aaa,aaa”.split(‘,’)
• The java split command is computationally and memory intensive

• it takes one string and creates (from above) 3 new strings

• creating those three new strings takes time and memory

• How can we do better?

• Idea: Do something in place, so we get the effect of split without
the other parts

• concept: replace the splitting char (,) with \0

• after doing this, ask for next …. until there are no more

14

mystrtok usage
• initialize with string

(char array) and a char
on which to split

• returns the first piece

• actually a pointer

to the first piece

• subsequent calls pass

NULL for string to split!!!

• can change the

splitter on every call

15

file: mystrtok.c

int main(int argc, char const *argv[])

{

 char splitter = argv[1][0];

 char string[50] = "Tst,s1,Tst,s2:Test:s3";

 char *splitPiece;

 printf("String \"%s\" is split into tokens
using a single char in \"%c\":\n", string,
splitter);

 splitPiece = mystrtok(string, splitter); //
get first token

 printf("%s\n", splitPiece);

 // get subsequent tokens -- NOTE USE OF NULL
-- cannot split two string at same time

 while (NULL != (splitPiece = mystrtok(NULL,
splitter))) {

 printf("%s\n", splitPiece);

 }

}

mystrtok.c
• everything pointers!

• one global variable

holds the location in
current string of the
end of last token.

• Idea, search forward

in string for next
instance of token.
When found, change
that character to \0.

16

char * mystrtok_lastp;

char * mystrtok(char * string, char token) {

 if (string!=NULL) {

 mystrtok_lastp=string;

 } else {

 if (mystrtok_lastp==NULL) return NULL;

 mystrtok_lastp++;

 }

 char *holdp=mystrtok_lastp;

 char *nptr = mystrtok_lastp;

 while (*nptr!=token && *nptr!='\0') {

 nptr++;

 }

 if (*nptr=='\0') {

 mystrtok_lastp=NULL;

 } else {

 mystrtok_lastp=nptr;

 *nptr='\0';

 }

 return holdp;

}

mystrtok

17

mystrtok (and strtok)
• Good:

• In place

• Fast

• No wasted effort

• for instance, if call atoi on the string

• Bad:

• more work if you need to keep the string as a string

• strcpy

• NOT parallelizable (because of that external variable)

18

