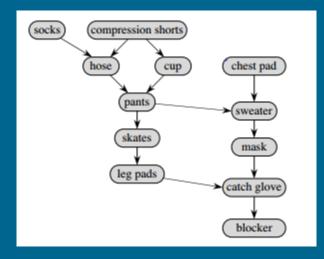
Directed Acyclic Graphs and Topological sort

By Nora Broderick and Hanna Fields

What is a DAG?



Directed Acyclic Graph

Vertices and directed edges

Acyclic - there is no way for a vertex to cycle back to itself

Starting point is vertex with no entering edges

Terms

Transitive - must be put before constraint

Vertices

Directed Edges

Directed Graphs

In-degree number of edges entering a vertex

Usage and Applications

Usage: Task based procedures that can only be done once and have multiple possible starting points potentially

Applications: Recipes, arithmetic operations, revision control

Algorithm Topological Sorting

Single linear order of performing a task

No circular dependencies

Assign numbers to vertices

Uses a stack

O(n+m) worst case

n is all vertices

m is all edges

Procedure TOPOLOGICAL-SORT(G)

Input: G: a directed acyclic graph with vertices numbered 1 to n.

Output: A linear order of the vertices such that u appears before v in the linear order if (u, v) is an edge in the graph.

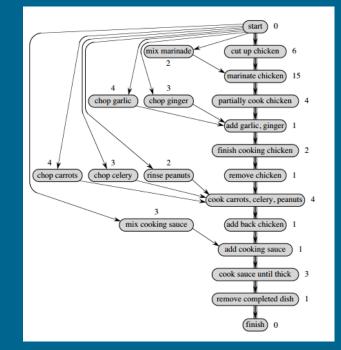
- Let *in-degree*[1..*n*] be a new array, and create an empty linear order of vertices.
- 2. Set all values in *in-degree* to 0.
- 3. For each vertex u:
 - A. For each vertex v adjacent to u:
 i. Increment *in-degree*[v].
- Make a list *next* consisting of all vertices u such that in-degree[u] = 0.
- 5. While next is not empty, do the following:
 - A. Delete a vertex from *next*, and call it vertex *u*.
 - B. Add u to the end of the linear order.
 - C. For each vertex v adjacent to u:
 - i. Decrement *in-degree*[v].
 - ii. If *in-degree*[v] = 0, then insert v into the *next* list.
- 6. Return the linear order.

PERT Chart

"Program Evaluation and Review Technique"

DAG with time corresponding to tasks

Critical Path: The most efficient amount of time to complete a task given unlimited resources or the minimum sum of time to complete a task



Algorithm Relax

Relaxation steps

Used in DAG shortest paths

Procedure RELAX(u, v)

Inputs: u, v: vertices such that there is an edge (u, v).

Result: The value of *shortest*[v] might decrease, and if it does, then *pred*[v] becomes u.

 If shortest[u] + weight(u, v) < shortest[v], then set shortest[v] to shortest[u] + weight(u, v) and set pred[v] to u.

Adjacency Matrix

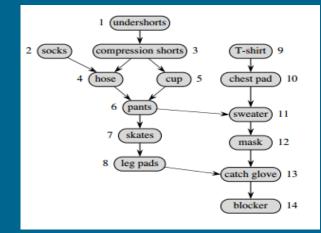
Each row and column correspond to a vertex

Adjacency List representation is an ordered list of the matrix

Fill with 1 if in Adjacency list and fill with 0 if not

Rows correspond to vertexes

Columns correspond to options of vertices to move to



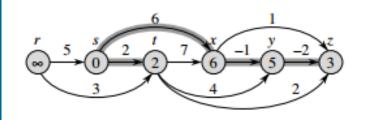
ſ	Adjacency matrix															Adjacency lists	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14		
	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	3
	2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	2	4
	3	0	0	0	1	1	0	0	0	0	0	0	0	0	0	3	4, 5
	4	0	0	0	0	0	1	0	0	0	0	0	0	0	0	4	6
	5	0	0	0	0	0	1	0	0	0	0	0	0	0	0	5	6
	6	0	0	0	0	0	0	1	0	0	0	1	0	0	0	6	7, 11
	7	0	0	0	0	0	0	0	1	0	0	0	0	0	0	7	8
	8	0	0	0	0	0	0	0	0	0	0	0	0	1	0	8	13
	9	0	0	0	0	0	0	0	0	0	1	0	0	0	0	9	10
	10	0	0	0	0	0	0	0	0	0	0	1	0	0	0	10	11
	11	0	0	0	0	0	0	0	0	0	0	0	1	0	0	11	12
	12	0	0	0	0	0	0	0	0	0	0	0	0	1	0	12	13
	13	0	0	0	0	0	0	0	0	0	0	0	0	0	1	13	14
	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14	(none)
		-														'	•

Algorithm DAG Shortest Path

Source Vertex

Target Vertex

Single source shortest paths



Procedure DAG-SHORTEST-PATHS(G, s)

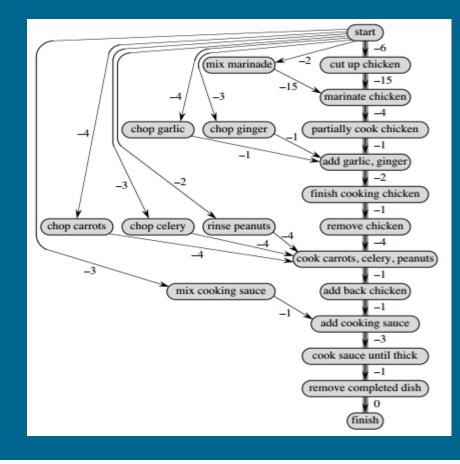
Inputs:

- G: a weighted directed acyclic graph containing a set V of n vertices and a set E of m directed edges.
- s: a source vertex in V.

Result: For each non-source vertex v in V, *shortest*[v] is the weight sp(s, v) of a shortest path from s to v and pred[v] is the vertex preceding v on some shortest path. For the source vertex s, *shortest*[s] = 0 and pred[s] = NULL. If there is no path from s to v, then *shortest*[v] = ∞ and pred[v] = NULL.

- 1. Call TOPOLOGICAL-SORT(G) and set *l* to be the linear order of vertices returned by the call.
- Set shortest[v] to ∞ for each vertex v except s, set shortest[s] to 0, and set pred[v] to NULL for each vertex v.
- 3. For each vertex u, taken in the order given by l:
 - A. For each vertex v adjacent to u: i. Call RELAX(u, v).

DAG Shortest Path Example



Sources

Corman Algorithms Unlocked Boston: MIT Press Books, 2013.

Thank you!