
Directed Acyclic Graphs and
Topological sort

By Nora Broderick and Hanna Fields

What is a DAG?

Directed Acyclic Graph

Vertices and directed edges

Acyclic - there is no way for a vertex to cycle
back to itself

Starting point is vertex with no entering edges

Terms

Transitive - must be put before constraint

Vertices

Directed Edges

Directed Graphs

In-degree number of edges entering a vertex

Usage and Applications

Usage: Task based procedures that can only be done once and have multiple
possible starting points potentially

Applications: Recipes, arithmetic operations, revision control

Algorithm Topological Sorting
Single linear order of performing

a task

No circular dependencies

Assign numbers to vertices

Uses a stack

O(n+m) worst case

n is all vertices

m is all edges

PERT Chart

“Program Evaluation and Review
Technique”

DAG with time corresponding to tasks

Critical Path: The most efficient amount of
time to complete a task given unlimited
resources or the minimum sum of time to
complete a task

Algorithm Relax

Relaxation steps

Used in DAG shortest paths

Adjacency Matrix

Each row and column correspond
to a vertex

Adjacency List representation is
an ordered list of the matrix

Fill with 1 if in Adjacency list and
fill with 0 if not

Rows correspond to vertexes

Columns correspond to options of
vertices to move to

Algorithm DAG Shortest Path

Source Vertex

Target Vertex

Single source shortest paths

DAG Shortest Path Example

Sources
Corman Algorithms Unlocked Boston: MIT Press Books, 2013.

Thank you!

