cs / philo 372

Week 11

Active Learning Instance-Based Learning Neural Network Learning

Active Learning

- Suppose:
 - Algorithm is able to learn one example at a time
 - Examples are free, example labels are expensive
 - any text domain
- Then might make sense to allow learning algorithm to select the examples to label
 - This is "active learning"
 - reported to reduce training set size by factor of 500
- Problem:
 - what examples do you label?
 - Can your learner provide requisite info?

Examples to get labels for

Suppose a 2 category classification problem in 2D. Further suppose circles represent locations of examples already seen in each category.

Info Needed from Algorithm

- Indication of "confidence" in label
 - Decision Trees?
 - Decision Lists?
 - AdaBoosted decision stumps?

•Note that binary classifiers can provide a "yes/ no" label and a separate confidence

•Other programs provide a probability statement that can be be interpreted as both a label and a confidence

Uncertainty Sampling Lewis & Catlett (1994)

- 1. Obtain an initial classifier
- 2. While expert is willing to label instances
 - (a) Apply the current classifier to each unlabeled instance
 - (b) Find the *b* instances for which the classifier is least certain of class membership
 - (c) Have the expert label the subsample of b instances
 - (d) Train a new classifier on all labeled instances

Uncertainty Sampling

- Problem
 - Use same program to select uncertain as to label.
 - Then program's bias tends to reinforce itself by selecting examples it is uncertain about
 - This can lead to strongly over predicting low frequency classes (among other things)
 - SO??
 - Banko & Brill use committee voting.
 - have committee vote on unlabeled set
 - Committee is formed of learner using different algorithms
 - Take N/2 on which committee agrees least
 - Take N/2 randomly selected (????)
 - Retrain committee and repeat on smaller unlabeled set

Analysis

- About 0.5% of examples is sufficient to achieve accuracy.
- Bigger sets of unlabeled examples improved classification accuracy
 - even though most were never even seen by the classifier
- Committee disagreement does predict errors

Classifiers	Test
In Agreement	Accuracy
10	0.8734
9	0.6892
8	0.6286
7	0.6027
6	0.5497
5	0.5000

Instance-Based Learning

- Two general methods
 - Nearest Neighbor
 - Kernel-Based Systems
 - e.g. Radial Basis Functions
- Assumptions
 - Training examples densely sample space
 - at least the interesting parts thereof
 - The classification space is relatively "smooth"

Instance-Based Analysis

from Langley & Iba 1993

Classification accuracy when there is 1 relevant feature

Instance-Based Analysis

from Langley & Iba 1993

Number of irrelevant attributes

Classification accuracy when there is 1 irrelevant feature

Theoretical accuracy of instance-based methods

Instance-Based Conclusions

- Apparent simplicity is attractive, but
 - What does "similar" mean
 - L1, L2 ... L-inf norms
 - Hamming distance
 - Mahalanobis distance
 - High dimensional spaces
 - Typically violate "dense sampling" requirement
 - Suppose want to base decisions on K nearest in a hypercube from among N known points in d dimensions
 - Then b^d=K/N where b is size of the length of the cube's side, or b=(K/N)^1/d
 - So if N=1000, d=2, and K=5, then b=0.07
 - But, if N=1,000,000, d=100 and K=5 then b=0.88
 - Irrelevant variables

Neural Networks

- Suppose have 2 inputs (may be binary) and 1 output as at left
- "Linear Threshold Unit"?
- Perceptron learning rule (1963)
 ch_wi= n*(Y-D)Ii
- Can this network represent all boolean functions?
 - If not, what modifications are needed?
 - What is the "bias unit" for?

Neural Networks

- Rummelhart & McClelland (1983) show that non-linear, differential function can represent and learn all boolean functions
- Xj = 1 / (1 + exp(-k*sum(Wi*Xi)))

Neural Networks

- Idea
 - Compute output by computing the "activation" of each node
 - The "forward propagation step"
 - Feedforward, "simple recurrent", recursive networks
 - With output known compute contribution to error of each input
 - The backward propagation step
 - Can be done through multiple "hidden layers" iff function is differentiable
 - As with perceptron learning rule typically take small steps

