Search

Lecture 2 January 30, 2007

Discussion of assignments and programming

Problem Solvable Using Search

- Assumptions about Problems
 - Static
 - Observable
 - Discrete
 - Deterministic
 - (Often) Markovian
- Definition of Problems
 - Initial state
 - Successor Function
 - Path Cost
 - Goal

Problems that are amenable to Search

- The 8 puzzle
 - Initial: some organization of tiles
 - Goal: Some other organization of tiles
 - Successor: moving around the blank
 - Path cost: just 1
- 8 Queens
- Route Finding
- Traveling Salesman
- Bin Packing

State Spaces

- Tic-tac-toe
 - 3^9=19683, but after symmetry, etc = 765
- N Puzzle
 - 8 -- 9!/2=181,440
 - 15 -- 16!/2=1,300,000,000,000
 - 24 25!/2=10^25
- N-Queens
 - 1.8*10^14
- Traveling Salesman
 - N!
 - Can be solved in 2^N (2^N << N!)

Searching the State Space

General Algorithm

fringe <- initial State A: s <- first state from fringe if s==GOAL then stop p <- successors of s fringe <- fringe union p if fringe empty then stop goto A

• (fringe union p) vs (p union fringe)

Evaluating Search

- •Completeness
- •Optimality
- •Time
- •Space
- •Cost

•Branching Factor

Breadth First Search

- Use the search algorithm with
 - fringe<- fringe union p
- Time & Space
 - O(V+E)
- Finds Optimal Solution
 - Yes if cost is a nondecreasing function of depth

Depth First Search

- Use the search algorithm with
 - fringe<- p union fringe
- Time
 - O(V+E), same as BFS
- Space
 - Better than BFS
- Finds Optimal Solution
 - Yes or No

http://www.rci.rutgers.edu/~cfs/472_html/AI_SEARCH/SearchAnimations.html

Iterative Deepening DFS

- Gets you best of DFS and BFS
- In a balanced tree time is at worst double
- Idea DFS to depth=1 then 2 then 3, ...

Other Uninfomed Searches

- Uniform cost
 - Applies BFS to links with transit cost
- Depth Limited
 - DFS but only so deep
- Bidirectional
 - BFS starting at beginning and end

Informed Search

- Key idea use a guess to guide the selection of the next move.
 - 8-puzzle guess might be number matching the goal
 - Navigation straight line distance from goal
- "Best first" search
 - Expand the node that is closest to the goal.
 - As opposed to BFS or DFS
 - "Greedy"

A* Search

- Minimize the total cost of the solution
- F'(n) = g(n) + h'(n)
 - F(n) == cost of solution going through node n
 - -g(n) == cost to get where you are (node n)
 - h(n) == cost to get from node n to goal
 - ' indicates an estimate
- Admissable
 - h is admissable if h'(n) < h(n)
- If h is admissable then A* will find optimal solution

Learning & A* search

- Are there opportunities?
- What info do you need?
 - What is cost of keeping this info?

Hill Climbing

- Suppose you are looking for the highest mountain. One approach is to start walking up hill. At every step go up in the steepest direction.
- Problems?
- How is this like A* search?

Hill Climbing (continued)

- Local maxima (minima)
- Flat spots
- Global maxima
- Ridges
- Saddle points

• Neural networks, decision trees, ...

Hill Climbing -- "fixing"

- Random Restarts
 - Start in a different place, end up at a different high point
- Beam Search
 - Start at n random points. Find all successors of that set. Call these N'. Eliminate from N' all but the n with best h'(). Repeat.
- Simulated Annealing
 - Every once in a while, give everything a good shake, but shake a little less every time you shake.

- Breadth First Search
- Depth First Search
- Branching Factor
- Best First Search, A*
- Open List, Closed List, fringe
- Hill Climbing
 - Flat spots, ridges, plateaus
 - Simulated Annealing, Random Restarts, Beam Search
- Greedy Functions
- Heuristics
 - admissible

AI Vocabulary