Al

Week 3
Adversarial Search



Games

* Most Al game playing is in games with the
following characteristics

- Zero-sum
- Two player
— Perfect Information

e Games that do not fit?



Static Evaluation Function
* A heuristic — look at a board and estimate the
probability of winning
* Useful when entire space cannot be searched

* Premise

- The deeper you search, the better your estimate

- Gaming terminology -- “ply"==depth==number of
moves

- S0 to get a better estimate

e Search deeper
* Get a better static evaluation function
* learning?



Search in a 2 player game

* Problem, the opponent always gets to move

* S0, every other move in the search tree is
made by the opposition

e Solution: “minimax algorithm”

- Assume: both players play optimally

- Assume: opponent evaluates the board exactly as
you

- Under these two assumptions opponent will always
choose what is best for them, which is the worst for
you



Minimax Algorithm

Ply Maximizing
K ﬁ Player

Minimizing
Player

Selected
Move




Minimax Algorithm

int MinMax(int depth) {

if (SideToMove() == WHITE) return Max(depth);

else return Min(depth);

int Max(int depth) {

int best = -INFINITY;
if (depth <=0) return Evaluate();
GeneratelLegalMoves();
while (MovesLeft()) {
MakeNextMove();
val = Min(depth - 1);
UnmakeMove();
if (val > best) best = val;

}

return best;

int Min(int depth){

int best = INFINITY;
if (depth <= 0) return Evaluate();
GeneratelLegalMoves();
while (MovesLeft()) {
MakeNextMove();
val = Max(depth - 1);
UnmakeMove();
if (val < best) best = val;

}

return best;



More on minimax: Problems

e 3 (or more) players?
e Games that are not zero sum?

* Branching factor in chess mid games is about
35 so how deep can you afford to search?

- Do you have to look at all 35 branches?

* Experts do not
* Some chess specific tricks get you down to about 3-5.
* Can you eliminate branches without knowing chess?



Alpha-Beta Pruning
* Basic ldea, do not expand any nodes that you
know would never be used

* While doing minimax search keep two numbers

- Alpha — the best score that you can get
- Beta — the worst move that the opponent will allow



Alpha-Beta Pruning Example




Alpha-Beta Pruning Algorithm

int AlphaBeta(int depth, int alpha, int beta) {
if (depth == 0) return Evaluate();
GeneratelLegalMoves();
while (MovesLeft()) {

MakeNextMove();

val = -AlphaBeta(depth - 1, -beta, -alpha);
UnmakeMove();

if (val >= beta) return beta;

if (val > alpha) alpha = val;

}

return alpha;

}



Alpha-Beta Pruning
Conclusions

Best case

- Need to examine only square root of number of nodes
- This would give you the time to search twice as deep

Problem

- To get best case need to carefully pick the order of
nodes to be expanded

Average case
- About half of theoretical max
Horizon effect



Backgammon

* Problems

- Does not fit “2 player, perfect info, zero sum”

- Dice give non-determinism and have effect of raisin
branching factor

* Mid game branching factor easily exceeds 100
- So, what to do?

 Traditional Answer

- Hand craft static evaluation function
- Search like mad



Neurogammon

e |dea:
- Do not hand craft a static evaluation function — learn
it using a neural network.

* Neural networks use math to address credit assignment
problem

- 1 move lookahead “if | do X, how good is it”
— Train NN using a library of 300,000 board positions

* Take two alternate moves from a given board and expert
says which is better

* Created a “strong intermediate” player



NeuroGammon -- analysis

* Made a lot of poor moves

- Insufficient training dataset?
* Problem: experts get bored

* Essentially learned to replicate the play of the
expert who rated the moved

- Without deep search computers can usually get
slightly better than their programmers at games, but
only slightly

* This was true of neurogammon
 Why?



TD Gammon
e |dea:

- Have computer play against itself

- No programmed knowledge other than rules of the
game

- Initially makes almost random moves
- But it gets better!

e Problem

— The credit assignment problem still
- Also, which move in a sequence deserves credit

e |t seems odd that is works

- Start with a really bad player playing against itself
and over time it becomes an expert!



TD Gammon - 1.0

Performance vs, Training Time
0.5

Sill
improving

05 b
After 12000
games it is
cometetive

Gammontool Benchmark (ppg)

Initially gets
gammoned a
lot

To s00 10000 |5ﬁ;n 20000 25000 30000 35000 40000 dsﬁm RO
MNumber of Training Games

Performance vs a good traditional backgammon program
About competetive with neurogammon



D Gammon 2 - 3

* Deeper look ahead
* More training games
* Achieved expert level play

e Of note

- Experts play is now heavily influenced by computer
- Experts regularly practice against computers

- TD gammon was first Al to win a world
championship at any game



Al Terms

e Zero Sum Game

Perfect Information

Static Evaluation Function
Ply
Minimax algorithm

Alpha Beta Pruning

orizon Effect



