

AI

Week 3
Adversarial Search

Games

● Most AI game playing is in games with the
following characteristics
– Zero-sum

– Two player

– Perfect Information

● Games that do not fit?

Static Evaluation Function
● A heuristic – look at a board and estimate the

probability of winning
● Useful when entire space cannot be searched
● Premise

– The deeper you search, the better your estimate
– Gaming terminology -- “ply”==depth==number of

moves
– So to get a better estimate

● Search deeper
● Get a better static evaluation function
● learning?

Search in a 2 player game
● Problem, the opponent always gets to move
● So, every other move in the search tree is

made by the opposition
● Solution: “minimax algorithm”

– Assume: both players play optimally
– Assume: opponent evaluates the board exactly as

you
– Under these two assumptions opponent will always

choose what is best for them, which is the worst for
you

Minimax Algorithm
Maximizing

Player

Minimizing
Player

Selected
Move

Ply

Minimax Algorithm
int MinMax(int depth) {
 if (SideToMove() == WHITE) return Max(depth);
 else return Min(depth);
}

int Max(int depth) {
 int best = -INFINITY;
 if (depth <= 0) return Evaluate();
 GenerateLegalMoves();
 while (MovesLeft()) {
 MakeNextMove();
 val = Min(depth - 1);
 UnmakeMove();
 if (val > best) best = val;
 }
 return best;
}

int Min(int depth){
 int best = INFINITY;
 if (depth <= 0) return Evaluate();
 GenerateLegalMoves();
 while (MovesLeft()) {
 MakeNextMove();
 val = Max(depth - 1);
 UnmakeMove();
 if (val < best) best = val;
 }
 return best;
}

More on minimax: Problems

● 3 (or more) players?
● Games that are not zero sum?
● Branching factor in chess mid games is about

35 so how deep can you afford to search?
– Do you have to look at all 35 branches?

● Experts do not
● Some chess specific tricks get you down to about 3-5.
● Can you eliminate branches without knowing chess?

Alpha-Beta Pruning
● Basic Idea, do not expand any nodes that you

know would never be used
● While doing minimax search keep two numbers

– Alpha – the best score that you can get
– Beta – the worst move that the opponent will allow

Alpha-Beta Pruning Example

Alpha-Beta Pruning Algorithm

int AlphaBeta(int depth, int alpha, int beta) {
 if (depth == 0) return Evaluate();
 GenerateLegalMoves();
 while (MovesLeft()) {
 MakeNextMove();
 val = -AlphaBeta(depth - 1, -beta, -alpha);
 UnmakeMove();
 if (val >= beta) return beta;
 if (val > alpha) alpha = val;
 }
 return alpha;
}

Alpha-Beta Pruning
Conclusions

● Best case
– Need to examine only square root of number of nodes
– This would give you the time to search twice as deep

● Problem
– To get best case need to carefully pick the order of

nodes to be expanded
● Average case

– About half of theoretical max
● Horizon effect

Backgammon

● Problems
– Does not fit “2 player, perfect info, zero sum”
– Dice give non-determinism and have effect of raisin

branching factor
● Mid game branching factor easily exceeds 100

– So, what to do?
● Traditional Answer

– Hand craft static evaluation function
– Search like mad

Neurogammon

● Idea:
– Do not hand craft a static evaluation function – learn

it using a neural network.
● Neural networks use math to address credit assignment

problem

– 1 move lookahead “if I do X, how good is it”
– Train NN using a library of 300,000 board positions

● Take two alternate moves from a given board and expert
says which is better

● Created a “strong intermediate” player

NeuroGammon -- analysis

● Made a lot of poor moves
– Insufficient training dataset?

● Problem: experts get bored

● Essentially learned to replicate the play of the
expert who rated the moved
– Without deep search computers can usually get

slightly better than their programmers at games, but
only slightly

● This was true of neurogammon
● Why?

TD Gammon
● Idea:

– Have computer play against itself
– No programmed knowledge other than rules of the

game
– Initially makes almost random moves
– But it gets better!

● Problem
– The credit assignment problem still
– Also, which move in a sequence deserves credit

● It seems odd that is works
– Start with a really bad player playing against itself

and over time it becomes an expert!

TD Gammon - 1.0

Initially gets
gammoned a

lot

After 12000
games it is
cometetive

Sill
improving

Performance vs a good traditional backgammon program
About competetive with neurogammon

TD Gammon 2 - 3

● Deeper look ahead
● More training games
● Achieved expert level play
● Of note

– Experts play is now heavily influenced by computer
– Experts regularly practice against computers
– TD gammon was first AI to win a world

championship at any game

AI Terms

● Zero Sum Game
● Perfect Information
● Static Evaluation Function
● Ply
● Minimax algorithm
● Alpha Beta Pruning
● Horizon Effect

