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Games

● Most AI game playing is in games with the 
following characteristics
– Zero-sum

– Two player

– Perfect Information

● Games that do not fit?



  

Static Evaluation Function
● A heuristic – look at a board and estimate the 

probability of winning
● Useful when entire space cannot be searched
● Premise

– The deeper you search, the better your estimate
– Gaming terminology -- “ply”==depth==number of 

moves
– So to get a better estimate

● Search deeper
● Get a better static evaluation function
● learning? 



  

Search in a 2 player game
● Problem, the opponent always gets to move
● So, every other move in the search tree is 

made by the opposition
● Solution: “minimax algorithm”

– Assume: both players play optimally
– Assume: opponent evaluates the board exactly as 

you
– Under these two assumptions opponent will always 

choose what is best for them, which is the worst for 
you
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Minimax Algorithm
int MinMax(int depth) {
    if (SideToMove() == WHITE)     return Max(depth);
    else    return Min(depth);
}

int Max(int depth)   {
    int best = -INFINITY;
    if (depth <= 0)  return Evaluate();
    GenerateLegalMoves();
    while (MovesLeft()) {
        MakeNextMove();
        val = Min(depth - 1);
        UnmakeMove();
        if (val > best)           best = val;
    }
    return best;
}

int Min(int depth){
    int best = INFINITY;  
    if (depth <= 0)   return Evaluate();
    GenerateLegalMoves();
    while (MovesLeft()) {
        MakeNextMove();
        val = Max(depth - 1);
        UnmakeMove();
        if (val < best)           best = val;
    }
    return best;
}



  

More on minimax: Problems

● 3 (or more) players?
● Games that are not zero sum?
● Branching factor in chess mid games is about 

35 so how deep can you afford to search?
– Do you have to look at all 35 branches?

● Experts do not
● Some chess specific tricks get you down to about 3-5.
● Can you eliminate branches without knowing chess?



  

Alpha-Beta Pruning
● Basic Idea, do not expand any nodes that you 

know would never be used
● While doing minimax search keep two numbers

– Alpha – the best score that you can get
– Beta – the worst move that the opponent will allow



  

Alpha-Beta Pruning Example



  

Alpha-Beta Pruning  Algorithm

int AlphaBeta(int depth, int alpha, int beta)  {
    if (depth == 0)        return Evaluate();
    GenerateLegalMoves();
    while (MovesLeft()) {
        MakeNextMove();
        val = -AlphaBeta(depth - 1, -beta, -alpha);
        UnmakeMove();
        if (val >= beta)            return beta;
        if (val > alpha)            alpha = val;
    }
    return alpha;
}



  

Alpha-Beta Pruning 
Conclusions

● Best case
– Need to examine only square root of number of nodes
– This would give you the time to search twice as deep

● Problem
– To get best case need to carefully pick the order of 

nodes to be expanded
● Average case

– About half of theoretical max
● Horizon effect



  

Backgammon

● Problems
– Does not fit “2 player, perfect info, zero sum”
– Dice give non-determinism and have effect of raisin 

branching factor
● Mid game branching factor easily exceeds 100

– So, what to do?
● Traditional Answer

– Hand craft static evaluation function
– Search like mad



  

Neurogammon

● Idea:
– Do not hand craft a static evaluation function – learn 

it using a neural network.
● Neural networks use math to address credit assignment 

problem

– 1 move lookahead “if I do X, how good is it”
– Train NN using a library of 300,000 board positions 

● Take two alternate moves from a given board and expert 
says which is better

● Created a “strong intermediate” player 



  

NeuroGammon -- analysis

● Made a lot of poor moves
– Insufficient training dataset?

● Problem: experts get bored

● Essentially learned to replicate the play of the 
expert who rated the moved
– Without deep search computers can usually get 

slightly better than their programmers at games, but 
only slightly

● This was true of neurogammon
● Why?  



  

TD Gammon
● Idea:

– Have computer play against itself 
– No programmed knowledge other than rules of the 

game
– Initially makes almost random moves
– But it gets better!

● Problem
– The credit assignment problem still
– Also, which move in a sequence deserves credit

● It seems odd that is works
– Start with a really bad player playing against itself 

and over time it becomes an expert!



  

TD Gammon - 1.0

Initially gets 
gammoned a 

lot

After 12000 
games it is 
cometetive

Sill 
improving

Performance vs a good traditional backgammon program
About competetive with neurogammon



  

TD Gammon 2 - 3

● Deeper look ahead
● More training games
● Achieved expert level play
● Of note

– Experts play is now heavily influenced by computer
– Experts regularly practice against computers
– TD gammon was first AI to win a world 

championship at any game



  

AI Terms

● Zero Sum Game
● Perfect Information
● Static Evaluation Function
● Ply
● Minimax algorithm
● Alpha Beta Pruning
● Horizon Effect


