Logic

Week 4
 cs/philo 372

-Logic \& AI
-Propositional Logic

- Prolog

Logic \& AI

- Logic is the way in which we put together facts.
- One of the 6 forms of human intelligence
- It is the one with the least complex "learning" component.
- Add a new fact
- GeorgeBush is President
- Add a new rule
- If parent \& male then father.
- Why: because
- What are facts / rules?
- Watanabe (1969) Theorem of the Ugly Duckling

Logic, AI, and Cyc

- "Cyc is an artificial intelligence project that attempts to assemble a comprehensive ontology and database of everyday common sense knowledge, with the goal of enabling AI applications to perform human-like reasoning."
- Ontology = rules of relationships between facts
- Started in 1984
- ... vision is to create the world's first true artificial intelligence, having both common sense and the ability to reason with it.

Cyc -- more

- Cyc is - at its core - a deductive theorem prover.
- It has facts and rules that relate those facts
- So, given a question it tries to "prove" the question given the rules and facts it knows.
- Q: Does Lassie have a nose?
- Lassie is a dog.
- Dogs are mammals
-

Logic

- Must have
- Syntax
- Semantics
- Reasoning
- Entailment
- If A is true, then B must also be true
- Inference Algorithms
- Soundness
- Only entailed sentences can be derived
- Completeness
- Not always possible because some spaces are infinite
- e.g., Algebra (ref Hilbert spaces \& Godel's incompleteness Theorem)

Propositional Logic

- Contains only
- Atomic Facts
- A, B, C
- Rules linking facts
- If $A \& B \& C$ then D
- Simple but rich
- Consider
- Geoff is a man
- Men are HomoSapiens
- HomoSapiens are mammals
- Conclude : Geoff is a mammal

The Game of Life In Propositional Logic

Consider a plane G marked off into a rectilinear grid
The each point in the grid is a propositional fact.
Call these points Ga, b
For each point write the following rules (e.g. for G3,4)
G3,4 \& G2,4 \& G4,4 \& not G3,3 \& not G3,5 => GG3,4
G3,4 \& G2,4 \& not G4,4 \& G3,3 \& not G3,5 => GG3,4 G3,4 \& not G2,4 \& G4,4 \& G3,3 \& not G3,5 => GG3,4 G3,4 \& G2,4 \& not G4,4 \& not G3,3 \& G3,5 => GG3.4 G3,4 \& not G2,4 \& G4,4 \& not G3,3 \& G3,5 => GG3,4 G3,4 => not GG3,4 not G3,4 \& G2,4 \& G4,4 \& G3,3 \& not G3,5 => GG3,4 not G3,4 \& G2,4 \& G4,4 \& not G3,3 \& G3,5 => GG3,4 not G3,4 \& G2,4 \& not G4,4 \& G3,3 \& G3,5 => GG3,4 not G3,4 \& not G2,4 \& G4,4 \& G3,3 \& G3,3 => GG3,4 not G3,4 => GG3.4.

Write this set of rules for every point.
To start the game, set a selection of the points $G a, b$ to true.
The play continues by determining values got all GG. The copy values for all GG back to G. Repeat.

The Game of Life (contd)

- Semantics
- For each point, go through set of rules until find one that matches, then stop
- Evaluate the rules for every point in parallel
- , indicates conjunction
- Disjunction only through multiple rules
- Inference
- Uses modus ponens - given " $A=>B$ " then if A true, can conclude B

Prop Logic can be hard

- 3SAT is NP complete
- Find a set of truth values such that the following is true
$-(A|B| C) \&(D|-E| F) \&(-G|H| I) \ldots$
- A,B,C are variables
- $\mid==$ or
- \& == and
- All variables can appear multiple times
- 3SAT is one of the canonical NP-complete problems

Propositional Logic analysis

- A purely "declarative" statement
- Procedures are relegated to semantics of the logic
- But many things are more easily phrased propositionally
- For example, the game of life
- Lack any way to express "unknown"
- Only true or false. Stuff you do not care about.
- Is "compositional"
- The whole is exactly the sum of the parts
- Rather wordy

More Propositional Analysis

- Representation of Relations
- Can sort of be done through rules
- WutheringHeights <=> authorEmilyBronte \& isabook \& publishedin1847 \&
- Really most of these are relations
- author(EmilyBronte, WutheringHeights).
- published(WutheringHeights, 1847).
- etc

First Order Logic

- Directly address the problem of representing relations
- FOL consists of
- User defined:
- Predicates - essentially propositional facts
- Relations (predicates)
- Language defined:
- Forall, thereExists
- And, or, not, then, if and only if
- So what is second order?

FOL facts

- Terms
- John
- Robin
- Unary relations
- king(John)
- evil(John)
- good(Robin)
- Binary Relations
- fight(John, Robin).
- N-ary relations

Game of Life in FOL

Consider a plane G marked off into a rectilinear grid The each point in the grid is a propositional fact.
Call these points $G(a, b)$
For each point write the following rules

```
G(a,b) & G(a-1,b) & G(a+1,b) & not G(a,b-1) & not G(a,b+1) => GG(a,b)
G(a,b) & G(a-1,b) & not G(a+1,b) & G(a,b-1) & not G(a,b+1) => GG(a,b)
G(a,b) & not G(a-1,b) & G(a+1,b) & G(a,b-1) & not G(a,b+1) => GG(a,b)
G(a,b) & G(a-1,b) & not G(a+1,b) & not G(a,b-1) & G(a,b+1) => GG(a,b)
G(a,b) & not G(a-1,b) & G(a+1,b) & not G(a,b-1) & G(a,b+1) => GG(a,b)
G(a,b) => not GG(a,b)
not G(a,b) & G(a-1,b) & G(a+1,b) & G(a,b-1) & not G(a,b+1) => GG(a,b)
not G(a,b) & G(a-1,b) & G(a+1,b) & not G(a,b-1) & G(a,b+1) => GG(a,b)
not G(a,b) & G(a-1,b) & not G(a+1,b) & G(a,b-1) & G(a,b+1) => GG(a,b)
not G(a,b) & not G(a-1,b) & G(a+1,b) & G(a,b-1) & G(a,b+1) => GG(a,b)
not G(A,b) => GG(a,b)
```

To start the game, set a selection of the points $G a, b$ to true.

FOL inference

- Given the facts on previous slide
- king(x)
- $x=J o h n$
- fight(x, Robin)
- $x=j o h n$

Prolog

- Subset of FOL
- Allows only "Horn Clauses"
- A disjunction of literals with at most 1 positive literal
- A or (not B) or (not C) or (not D)
- A horn clause can also be written
- B \& C \& D -> A
- Reason for limitation
- This gives nice readable rules
- Determining satisfiability over Horn clauses is Pcomplete.
- Is this too limiting?

Prolog Basics

- All prolog sentences must end with .
- geoff.
- This sentence "asserts" the fact "geoff" into prolog
- Geoff.
- Names with initial cap are variables, so this is illegal, it is an unbounded variable
- prof(geoff).
- Asserts fact that geoff is a prof

SWI Prolog

- Starting
- CS department machines: pl
- On mac: /usr/local/bin/swipl
- On PC: GUI installed in Program Files/pl
- Stopping
- mac/unix <ctrl>d
- Windows: GUI quit
- Loading Files
- mac/unix create files name.pl then ['name'].
- PC - use the menu
- SWI has free installs on unix/mac/PC

Prolog Reasoning

- Suppose you enter the facts:
- prof(geoff).
- prof(deepak).
- prof(diana).
- In swiprolog facts must be read from a file.
- Then entered the query:
- prof(X).
- This is equivalent to asking "what can be bound to X to make this statement true.
- To see all possible "bindings" of X hit ";" after seeing each
- Problem - this DB is inadequate
- improve it.

Prolog Rules

- human (X) :- $\operatorname{prof}(X)$.
- Prolog reasons with rules in reverse.
- So this rule says "conclude X is a human if you can show that X is a prof.
- Problem: extend this to show profs are mammals because they are human.

Prolog Reasoning

- Write facts to put in the graph below
- Write rules to determine if there is a path of length 2 connecting 2 points
- edges are uni-directional left to right
- Write rules that return the intervening node.
- Extend to bi-directional edges without adding facts????

Prolog Lists \& output

- Lists are written [a,b,c,d]
- Scanning a list
- scan([]).
- scan([Head | Tail]) :- inform(Head), scan(Tail).
- One of the following rules:
- inform (X) :- nl, write([hello, X]).
- inform (X) :- write([hello, $X]$), nl.
- inform (X) :- put(X), nl.
- inform (X) :- nl, put(X).
- Note that "write" uses a prolog list.

Prolog - things to remember

- If you want to know what prolog - or return a value, you need a variable. E.g.,
- p2(X, A, Y) :- edge(X,A), edge(A,Y). - p2(a,Xxxx,d).
- This would show you the value(s) of $X x x x$ so that it is a node that links a and d.
- Prolog evaluates in order from the top of file down. So changing order of rules and facts can change program behavior.

