

More Logic

CS / Philo 372
week 5

Quantification
●

– Existential Quantification
– Read: there exists an x such that P(x) is true

●

– Universal Quantification
– Read: for all x P(x) is true

∃ x Px 

∀ x Px 

Quantification
● Suppose this set of facts

– english(george).
english(henry).
english(william).
english(richard).
english(john).
french(henri).

● What do each of these sentences mean?
– forAll x english(x) => king(x).
– thereExists x english(x) => evil(x).
– thereExists x thereExists y english(x) & french(y) => fight(x,y)
– thereExists x forAll y english(x) & french(y) => fight(x,y).

Quantification Equivalence
● forall x not(P(x)) === not(exists x P(x))

● not(forall x P(x)) === exists x not(P(x))

● forall x P(x) === not(exists x not(P(x)))

● exists x P(x) === not(forall x not(P(x)))

Unification
● The process of finding facts that can

consistently satisfy the constraints specified in a
sentence
– Recall from last week
– edge2(X,Y,Z) :- edge(X,Z) , edge(Z, Y).
– When asked edge2(a,Mid,f) should get

● Mid=d
● Mid=c

– When asked edge2(Bgn,d,Nd) you get
● Bgn=a, Nd=f
● Bgn=a, Nd=g
● Bgn=a,Nd=e

Forward Chaining
Production Systems

● Basic concept
– Start at the facts and use rules to derive new facts
– Keep on deriving new facts until one of the new

facts is the thing that you want to prove
● hassecrets(X) & citizenof(X,Z) & paidby(X,Y) &

enemyof(Y,Z) => traitor(X,Z).
spy(x) => hassecrets(x)
cia(x) => hassecrets(X) & citizenof(X, usa)
....

● cia(bill).
paidby(bill, cuba).
....

Forward Chaining
● Major problem of FC is time

– Usual first trick is to have few facts
● For instance R1 / XCON had more than 10,000 rules in

its library but would often start with ~10 facts
● The set of facts (both starting and derived) is called the

“working memory”

● Conjunct Ordering Problem
– Find the ordering of conjuncts in the premise of a

rule such that the total cost of determining if the rule
is satisfies is minimal.

● NP-complete

Forward chaining ...
● Conflict sets

– At any one time several rules will satisfy all of their
preconditions, how do you choose which one to
execute (this is usually called “firing”)

● The first one in the rule base
● The most specific one
● The one most recently satisfied by changes to WM.
● ...

● Incremental FC
– Do not recalc which rules match every time a new

fact is deduced. (The conflict set does not change
much because of one new fact)

● Rete algorithm (a time-space trader)

SOAR
● A “general” mechanism for learning and acting

– Newell (CMU), Laird (PARC), Rosenbloom(Stanford)
– Throughout 1980's
– Based on production systems

● Assume exists a “general performance system”
● Then a general learner must be general in

– Task – works on all tasks
– Knowledge – based on any info (examples, hints, ...)
– Aspect – works on all aspects of system

Soar – the system
● Tasks have 4 required components

– Goal – checkmate
– Current problem space – chess
– State – the chess board
– Operator – a legal move from among many

● Also “augmentations”
● Many tasks can be worked on concurrently
● Each task can have many subtasks

Soar tasks
● Tasks start with only a goal statement

– problem can be broken down into filling the rest of
the task fields

● Namely: problem space, initial state and operator

● LT memory is a production system
– Rules fire in parallel during “elaboration phase”

which is used to to select operator
– Rules fire until “quiessence”

● Different for prior discussion of production systems?

Soar – performance
● Hope at end of elaboration phase is a uniquely

identified operator to apply
● However, there may be an “impass”

– No operator to apply (dead end)
– Several operators appear to be equivalent – maze
– No operator is better than any other – dark maze
– Operators might be applied but all are rejected

● If have an impass, create a new (sub) task
– Note that the new task might have a different

problem spaces than the parent task

Learning in Soar
● 3 problems need to be addressed when thinkin

about learning within a performance system
1) When is learning needed
2) What needs to be learned
3) When is the info to be learned available

● In Soar these have natural answers – subtask
solution

● But Soar subtasks are rather specific
● They need to be generalized

● “Identifier variabilization”
● Implicit generalization – the subtask contains only a

fraction of the info in the larger task

Backward Chaining
Logic Programming

● Start with a conclusion and work backward until
you find a set of facts that are in the database

● Negation as failure
● Infinite loops

– Depth-first backward chaining is “Incomplete”
● Is breadth first also incomplete?
● Is this a problem for forward chaining also?

More Prolog -- Building Lists
● Problem – determine if a list is a palindrome

– Yes: [], [a], [a,a], [a,b,a],
– No: [a,b],

● Idea: a list is a palindrome if the list and its reverse
are identical
– palindrome(X) :- samelist(X,Y), reverse(X,Y).
– Samelist

● Base case: samelist([],[]).
● Other rules?

– Reverse
● Base case: reverse([], []).
● reverse([H|T],Res) :- reverse(T,Res2), append(Res2,[H], Res).

– NOTE: the reversed list is being built on the returns

Prolog – more
list building

● Recognize a^nb^n
– Yes: [], [a,a,a,b,b,b],
– No: [a], [b,b], [a,a,b,b,b],

● Basecase:
– anbn([]).

● Rule:
– anbn([a|Tail]) :- anbn(Tail, [a]).

● Another basecase:
– Anbn([], []).

● More Rules:
– anbn([a|Tail], Aa) :- anbn(Tail, R), append(Aa,[a]. R)
– anbn([b|Btail], [a|Atail]) :- anbn(Btail, Atail).

Prolog – doing math
● Same problem:
● anbn2([]).
● anbn2([a|T]) :- anbn2(T, 1).
● anbn2([], 0).
● anbn2([a|T], N) :- plus(N,1,Sm), anbn2(T,Sm).
● anbn2([b|T], N) :- plus(N, -1, Sm), anbn2(T,Sm).

Prolog – more lists
● Take a multilevel list and flatten it

– [[[[a]]]] -> [a] or [a[b[c,d],e]] -> [a,b,c,d,e]
● Base case

– fltten([], []).
● Calls

– fltten([A|T], X) :- atom(A), fltten(T,Y),
append([A],Y,X). % note the use of “atom”

– fltten([A|T], X) :- append([A],Y,X), fltten(T, Y).
● What happens is reverse append and fltten in

last rule?

