Induction & Decision Trees

CS / Philo 372 week 7

The problem of Induction

- D. Hume (1748)
 - two possible justifications for induction
 - the future must resemble the past
 - must it?
 - it has worked most often in the past, so it will probably continue to work most often in the future.
 - but this uses induction to justify inductuion
- B. Russell (1946)
 - "[induction is] an independent logical principle, incapable of being inferred either from experience or from other logical principles, and that without this principle, science is impossible"
 - So it is a postulate rather than a theorem

Escaping Hume

- K. Popper (1902-1994)
 - Science is not primarily induction but deduction
 - a hypothesis which does not allow for experimental tests of falsity is outside the bounds of science
 - Pauli "it is not even wrong"
- W. Whewell ~1847
 - Induction is a 2 step process
 - colligation: the mental operation of bringing together a number of empirical facts by "superinducing" upon them a conception which unites the facts and renders them capable of being expressed by a general law.
 - Explication: first clarify the colligation, then apply it. E.g., Kepler ellipse of Mars orbit, then apply it to other planets
 - "explication" is the step that justifies induction

Inductive learning Characterizing the Problem

- Form of the element descriptions upon which learning is to take place
- Form of the feedback
- Representation of the learned Information
- Availability of "prior knowledge"
- Inductive Bias

Form of the available data

- The Physical Symbol System Hypothesis, Newell & Simon 1963
 - "a physical symbol system has the necessary and sufficient means of general intelligent action"
 - Interpreted to mean that "any system exhibiting intelligence must operate by manipulating data structures composed of symbols"
 - understand a picture by breaking it down to named things
 - understand a flower
 - 2 questions
 - Does the interpretation follow from the statement
 - Is the interpretation rational / correct?

What organizing principles are in these pictures?

taken from Abu-Mustafa 1995

What are the organizing principles here?

Taken from Michalski 1983

(C)

Forms of Feedback

- Supervised Learning
 - A teacher tells you what things are
 - that is poisonous, that is not
- Unsupervised Learning
 - No teacher
 - generally boils down to clustering
- Reinforcement Learning
 - teaching signal from environment at end of trial
 - Backgammon
 - foraging for food
 - I got sick after eating those mushrooms, that grass, ...

Representation of learning

- Decision Tree, Rules, Bayes nets, polynomials
- Representation matters
 - people want explanations not just instruction
 - explanations help when things go wrong
 - According to Whewell, explainability is vital, without it induction is unjustifiable and incomplete.

Prior Knowledge

- How do you use it?
 - In games often build it into the static evaluation function,
 - e.g. Samuels (1963) checker player
 - OTOH Tesauro's backgammon program
 - even here, the feature detectors represent built in prior knowledge (PSS)
- Learning with "hints"
 - Abu-Mustafa 1995

Induction on Computers

- Desirable Characteristics
 - Occam's razor
 - Directly measurable on a computer
 - how many bits does it take to represent the hypothesis

0 0

- should be fewer than required to represent the data
- Generalization
 - accurately predicts examples not previously seen
 - predictability / prediction
 - smoothness
- Speed
 - needs few examples to learn
 - CPU time for performance task is minimal
- Explication

Decision Trees

- Bias: simple trees are preferred to complex ones (an Occam bias)
- Bias: Axis orthogonal splits of the data
- Approach: search through the space of decision trees starting with simple ones and getting more complex as needed
- A "decision tree" is a tree whose
 - non-leaf nodes are labeled with attribute/value pairs
 - leaf nodes are labeled with categories

Claims about Decision Trees

- are simple to understand and interpret.
- have value even with little hard data.
- use a white box model.
- can be combined with other decision techniques.

Sample Decision Tree Choosing a book

Building a Decision Tree

- Pick a feature of the data
 - draw a branch & node for each value of that feature
 - in each node collect all examples that have the value of the attribute
 - If all examples are in the same category STOP
 - Call the examples you have the data and return to first step

http://www.cs.ualberta.ca/%7Eaixplore/learning/DecisionTrees/index.html http://www.cs.ubc.ca/labs/lci/CIspace/Version4/dTree/index.html

Choosing the order of decisions

- Question Goal:
 - Generalization accuracy
 - Minimal size tree
 - Cost of information
- Picking a good feature
 - the one that results in the cleanest subcategories?
 - the one that splits the dataset most evenly?
 - the lowest cost, safest, non-destructive?
 - Greedy?
- Build every possible tree ?
 - which to use from decision "forest"
 - (Murphy & Pazzani, 1994)

	А	В	Х	Y	Z
YES	Т	t	t	t	t
YES	Т	t	t	t	F
yES	Т	t	t	F	t
yES	Т	t	t	F	F
yES	Т	t	F	t	t
yES	Т	t	F	t	F
yES	Т	t	F	F	t
yES	Т	t	F	F	F
yES	Т	F	t	t	t
NO	Т	F	t	t	F
nO	Т	F	t	F	t
nO	Т	F	t	F	F
nO	Т	F	F	t	t
nO	Т	F	F	t	F
nO	Т	F	F	F	t
nO	Т	F	F	F	F
yES	F	t	t	t	t
nO	F	t	t	t	F
nO	F	t	t	F	t
nO	F	t	t	F	F
nO	F	t	F	t	t
nO	F	t	F	t	F
nO	F	t	F	F	t
nO	F	t	F	F	F
yES	F	F	t	t	t
nO	F	F	t	t	F
nO	F	F	t	F	t
nO	F	F	t	F	F
nO	F	F	F	t	t
nO	F	F	F	t	F
nO	F	F	F	F	t
nO	F	F	F	F	F

A Synthetic Example XYZ or AB

- Given that we know the answer we can write the tree.
- It has 5 internal nodes and 6 leaves

Mushroom Data

http://www.ics.uci.edu/~mlearn/MLSummary.html

p,x,s,n,t,p,f,c,n,k,e,e,s,s,w,w,p,w,o,p,k,s,u e,x,s,y,t,a,f,c,b,k,e,c,s,s,w,w,p,w,o,p,n,n,g e,b,s,w,t,l,f,c,b,n,e,c,s,s,w,w,p,w,o,p,n,n,m p,x,y,w,t,p,f,c,n,n,e,e,s,s,w,w,p,w,o,p,k,s,u e,x,s,g,f,n,f,w,b,k,t,e,s,s,w,w,p,w,o,e,n,a,g e,x,y,y,t,a,f,c,b,n,e,c,s,s,w,w,p,w,o,p,k,n,g e,b,s,w,t,a,f,c,b,g,e,c,s,s,w,w,p,w,o,p,k,n,m e,b,y,w,t,l,f,c,b,n,e,c,s,s,w,w,p,w,o,p,n,s,m p,x,y,w,t,p,f,c,n,p,e,e,s,s,w,w,p,w,o,p,k,v,g e,b,s,y,t,a,f,c,b,g,e,c,s,s,w,w,p,w,o,p,k,s,m e,x,y,y,t,l,f,c,b,g,e,c,s,s,w,w,p,w,o,p,n,n,g e,x,y,y,t,a,f,c,b,n,e,c,s,s,w,w,p,w,o,p,k,s,m e,b,s,y,t,a,f,c,b,w,e,c,s,s,w,w,p,w,o,p,n,s,g p,x,y,w,t,p,f,c,n,k,e,e,s,s,w,w,p,w,o,p,n,v,u e,x,f,n,f,n,f,w,b,n,t,e,s,f,w,w,p,w,o,e,k,a,q e,s,f,g,f,n,f,c,n,k,e,e,s,s,w,w,p,w,o,p,n,y,u e,f,f,w,f,n,f,w,b,k,t,e,s,s,w,w,p,w,o,e,n,a,g p,x,s,n,t,p,f,c,n,n,e,e,s,s,w,w,p,w,o,p,k,s,g p,x,y,w,t,p,f,c,n,n,e,e,s,s,w,w,p,w,o,p,n,s,u p,x,s,n,t,p,f,c,n,k,e,e,s,s,w,w,p,w,o,p,n,s,u e,b,s,y,t,a,f,c,b,k,e,c,s,s,w,w,p,w,o,p,n,s,m p,x,y,n,t,p,f,c,n,n,e,e,s,s,w,w,p,w,o,p,n,v,g e,b,y,y,t,l,f,c,b,k,e,c,s,s,w,w,p,w,o,p,n,s,m e,b,y,w,t,a,f,c,b,w,e,c,s,s,w,w,p,w,o,p,n,n,m e,b,s,w,t,l,f,c,b,g,e,c,s,s,w,w,p,w,o,p,k,s,m p,f,s,w,t,p,f,c,n,n,e,e,s,s,w,w,p,w,o,p,n,v,g e,x,y,y,t,a,f,c,b,n,e,c,s,s,w,w,p,w,o,p,n,n,m

1. cap-shape:	bell=b,conical=c,convex=x,flat=f,			
	knobbed=k,sunken=s			
2. cap-surface:	fibrous=f,grooves=g,scaly=y,smooth=s			
3. cap-color:	brown=n,buff=b,cinnamon=c,gray=g,green=r,			
·	pink=p,purple=u,red=e,white=w,yellow=y			
4. bruises?:	bruises=t,no=f			
5. odor:	almond=a,anise=l,creosote=c,fishy=y,foul=f,			
	musty=m,none=n,pungent=p,spicy=s			
6. gill-attachment:	attached=a,descending=d,free=f,notched=n			
7. gill-spacing:	close=c,crowded=w,distant=d			
8. gill-size:	broad=b,narrow=n			
9. gill-color:	black=k,brown=n,buff=b,chocolate=h,gray=g,			
	green=r,orange=o,pink=p,purple=u,red=e,			
	white=w,yellow=y			
10. stalk-shape:	enlarging=e,tapering=t			
11. stalk-root:	bulbous=b,club=c,cup=u,equal=e,			
	rhizomorphs=z,rooted=r,missing=?			
12. stalk-surface-a	bove-ring: ibrous=f,scaly=y,silky=k,smooth=s			
13. stalk-surface-b	elow-ring: ibrous=f,scaly=y,silky=k,smooth=s			
14. stalk-color-above-	-r: brown=n,buff=b,cinnamon=c,gray=g,orange=o,			
	pink=p,red=e,white=w,yellow=y			
15. stalk-clr-below-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o,				
	pink=p,red=e,white=w,yellow=y			
16. veil-type:	partial=p,universal=u			
17. veil-color:	brown=n,orange=o,white=w,yellow=y			
18. ring-number:	none=n,one=o,two=t			
19. ring-type:	cobwebby=c,evanescent=e,flaring=f,large=l,			
	none=n,pendant=p,sheathing=s,zone=z			

Problems

- Picking good features
- Features that are not categorical
 - e.g. numbers
- Missing data
- Noisy data
- Missing category labels

Picking Good Features

- The ID3 approach
 - Find a leaf that is not all the same catagory.
 - try all possible features to create new leaves
 - select the feature that maximizes the "information gained"
 - roughly this balances homogeneity of the leaves against the number of leaves added.

Picking Good Features (II)

Overfitting

- This algorithm gets into trouble overfitting the data. This occurs with noise and correlations in the training set that are not reflected in the data as a whole.
- ▶ To handle overfitting:
 - You can restrict the splitting, so that you split only when the split is useful.
 - You can allow unrestricted splitting and prune the resulting tree where it makes unwarranted distinctions.