Induction \& Decision Trees

CS / Philo 372
week 7

The problem of Induction

- D. Hume (1748)
- two possible justifications for induction
- the future must resemble the past
- must it?
- it has worked most often in the past, so it will probably continue to work most often in the future.
- but this uses induction to justify inductuion
- B. Russell (1946)
- "[induction is] an independent logical principle, incapable of being inferred either from experience or from other logical principles, and that without this principle, science is impossible"
- So it is a postulate rather than a theorem

Escaping Hume

- K. Popper (1902-1994)
- Science is not primarily induction but deduction
- a hypothesis which does not allow for experimental tests of falsity is outside the bounds of science
- Pauli "it is not even wrong"
- W. Whewell ~1847
- Induction is a 2 step process
- colligation: the mental operation of bringing together a number of empirical facts by "superinducing" upon them a conception which unites the facts and renders them capable of being expressed by a general law.
- Explication: first clarify the colligation, then apply it. E.g., Kepler ellipse of Mars orbit, then apply it to other planets
- "explication" is the step that justifies induction

Inductive learning Characterizing the Problem

- Form of the element descriptions upon which learning is to take place
- Form of the feedback
- Representation of the learned Information
- Availability of "prior knowledge"
- Inductive Bias

Form of the available data

- The Physical Symbol System Hypothesis, Newell \& Simon 1963
- "a physical symbol system has the necessary and sufficient means of general intelligent action"
- Interpreted to mean that "any system exhibiting intelligence must operate by manipulating data structures composed of symbols"
- understand a picture by breaking it down to named things
- understand a flower
- 2 questions
- Does the interpretation follow from the statement
- Is the interpretation rational / correct?

What organizing principles are in these pictures?

taken from Abu-Mustafa 1995

What are the organizing principles here?

Taken from Michalski 1983

Forms of Feedback

- Supervised Learning
- A teacher tells you what things are
- that is poisonous, that is not
- Unsupervised Learning
- No teacher
- generally boils down to clustering
- Reinforcement Learning
- teaching signal from environment at end of trial
- Backgammon
- foraging for food
- I got sick after eating those mushrooms, that grass, ...

Representation of learning

- Decision Tree, Rules, Bayes nets, polynomials
- Representation matters
- people want explanations not just instruction
- explanations help when things go wrong
- According to Whewell, explainability is vital, without it induction is unjustifiable and incomplete.

Prior Knowledge

- How do you use it?
- In games often build it into the static evaluation function,
- e.g. Samuels (1963) checker player
- OTOH Tesauro's backgammon program
- even here, the feature detectors represent built in prior knowledge (PSS)
- Learning with "hints"
- Abu-Mustafa 1995

Induction on Computers

- Desirable Characteristics
- Occam's razor
- Directly measurable on a computer
- how many bits does it take to represent the hypothesis
- should be fewer than required to represent the data
- Generalization
- accurately predicts examples not previously seen
- predictability / prediction
- smoothness
- Speed
- needs few examples to learn
- CPU time for performance task is minimal
- Explication

Decision Trees

- Bias: simple trees are preferred to complex ones (an Occam bias)
- Bias: Axis orthogonal splits of the data
- Approach: search through the space of decision trees starting with simple ones and getting more complex as needed
- A "decision tree" is a tree whose
- non-leaf nodes are labeled with attribute/value pairs
- leaf nodes are labeled with categories

Claims about Decision Trees

- are simple to understand and interpret.
- have value even with little hard data.
- use a white box model.
- can be combined with other decision techniques.

Sample Decision Tree Choosing a book

Building a Decision Tree

- Pick a feature of the data
- draw a branch \& node for each value of that feature
- in each node collect all examples that have the value of the attribute
- If all examples are in the same category STOP
- Call the examples you have the data and return to first step
http://www.cs.ualberta.ca/\~aixplore/learning/DecisionTrees/index.html http://www.cs.ubc.ca/labs/lci/CIspace/Version4/dTree/index.html

Choosing the order of decisions

- Question - Goal:
- Generalization accuracy
- Minimal size tree
- Cost of information
- Picking a good feature
- the one that results in the cleanest subcategories?
- the one that splits the dataset most evenly?
- the lowest cost, safest, non-destructive?
- Greedy?
- Build every possible tree - ?
- which to use from decision "forest"
- (Murphy \& Pazzani, 1994)

A Synthetic Example XYZ or AB

- Given that we know the answer we can write the tree.
- It has 5 internal nodes and 6 leaves

Mushroom Data

http://www.ics.uci.edu/~mlearn/MLSummary.html

Abstract

p,x,s,n,t,p,f,c,n,k,e,e,s,s,w,w,p,w,o,p,k,s,u e,x,s,y,t,a,f,c,b,k,e,c,s,s,w,w,p,w,o,p,n,n,g e,b,s,w,t,l,f,c,b,n,e,c,s,s,w,w,p,w,o,p,n,n,m p,x,y,w,t,p,f,c,n,n,e,e,s,s,w,w,p,w,o,p,k,s,u e,x,s,g,f,n,f,w,b,k,t,e,s,s,w,w,p,w,o,e,n,a,g e, x,y,y,t,a,f,c,b,n,e,c,s,s,w,w,p,w,o,p,k,n,g e,b,s,w,t,a,f,c,b,g,e,c,s,s,w,w,p,w,o,p,k,n,m e,b,y,w,t,l,f,c,b,n,e,c,s,s,w,w,p,w,o,p,n,s,m p,x,y,w,t,p,f,c,n,p,e,e,s,s,w,w,p,w,o,p,k,v,g e,b,s,y,t,a,f,c,b,g,e,c,s,s,w,w,p,w,o,p,k,s,m $e, x, y, y, t, l, f, c, b, g, e, c, s, s, w, w, p, w, o, p, n, n, g$ $e, x, y, y, t, a, f, c, b, n, e, c, s, s, w, w, p, w, o, p, k, s, m$ e,b,s,y,t,a,f,c,b,w,e,c,s,s,w,w,p,w,o,p,n,s,g p,x,y,w,t,p,f,c,n,k,e,e,s,s,w,w,p,w,o,p,n,v,u e,x,f,n,f,n,f,w,b,n,t,e,s,f,w,w,p,w,o,e,k,a,g e,s,f,g,f,n,f,c,n,k,e,e,s,s,w,w,p,w,o,p,n,y,u e,f,f,w,f,n,f,w,b,k,t,e,s,s,w,w,p,w,o,e,n,a,g p,x,s,n,t,p,f,c,n,n,e,e,s,s,w,w,p,w,o,p,k,s,g p,x,y,w,t,p,f,c,n,n,e,e,s,s,w,w,p,w,o,p,n,s,u p,x,s,n,t,p,f,c,n,k,e,e,s,s,w,w,p,w,o,p,n,s,u e,b,s,y,t,a,f,c,b,k,e,c,s,s,w,w,p,w,o,p,n,s,m p,x,y,n,t,p,f,c,n,n,e,e,s,s,w,w,p,w,o,p,n,v,g e,b,y,y,t,l,f,c,b,k,e,c,s,s,w,w,p,w,o,p,n,s,m e,b,y,w,t,a,f,c,b,w,e,c,s,s,w,w,p,w,o,p,n,n,m e,b,s,w,t,l,f,c,b,g,e,c,s,s,w,w,p,w,o,p,k,s,m p,f,s,w,t,p,f,c,n,n,e,e,s,s,w,w,p,w,o,p,n,v,g $e, x, y, y, t, a, f, c, b, n, e, c, s, s, w, w, p, w, o, p, n, n, m$

1. cap-shape:
2. cap-surface:
3. cap-color:
4. bruises?:
5. odor:
6. gill-attachment:
7. gill-spacing:
8. gill-size:
9. gill-color:
10. stalk-shape:
11. stalk-root:
12. veil-type:
13. veil-color:
14. ring-number:
15. ring-type:
16. stalk-surface-above-ring: ibrous $=f, s c a l y=y$, silk $y=k, s m o o t h=s$
17. stalk-surface-below-ring: ibrous=f,scaly=y,silky=k,smooth=s
18. stalk-color-above-r: brown=n,buff=b,cinnamon=c,gray=g,orange $=0$, pink=p,red=e, white=w, yellow=y
19. stalk-clr-below-ring: brown=n,buff=b,cinnamon=c,gray=g,orange $=0$, pink=p,red=e,white=w, yellow=y
bell=b,conical=c,convex=x,flat=f, knobbed=k,sunken=s
fibrous $=f$, grooves $=g, s c a l y=y, s m o o t h=s$
brown=n,buff=b,cinnamon=c,gray=g,green=r, pink=p,purple=u,red=e,white=w,yellow=y
bruises=t,no=f
almond=a, anise $=1$, creosote $=c$, fishy $=y$, foul $=\mathrm{f}$, musty=m,none=n,pungent=p,spicy=s
attached=a,descending=d,free=f,notched=n
close $=c$, crowded $=w$, distant $=d$
broad=b,narrow=n
black=k,brown=n,buff=b,chocolate=h,gray=g, green $=r$, orange $=o$, pink $=p$, purple $=u$, red $=e$, white=w,yellow=y
enlarging=e,tapering=t
bulbous=b,club=c,cup=u,equal=e, rhizomorphs=z,rooted=r,missing=?
partial=p,universal=u
brown=n,orange=o,white=w,yellow=y
none=n,one=o,two=t
cobwebby=c,evanescent=e,flaring=f,large=l, none=n,pendant=p,sheathing=s,zone=z

Problems

- Picking good features
- Features that are not categorical
- e.g. numbers
- Missing data
- Noisy data
- Missing category labels

Picking Good Features

- The ID3 approach
- Find a leaf that is not all the same catagory.
- try all possible features to create new leaves
- select the feature that maximizes the "information gained"
- roughly this balances homogeneity of the leaves against the number of leaves added.

Picking Good Features (II)

Overfitting

- This algorithm gets into trouble overfitting the data. This occurs with noise and correlations in the training set that are not reflected in the data as a whole.
> To handle overfitting:
- You can restrict the splitting, so that you split only when the split is useful.
- You can allow unrestricted splitting and prune the resulting tree where it makes unwarranted distinctions.

