
Probabilistic Models 
• Models describe how (a portion of) the world works 

 
• Models are always simplifications 

– May not account for every variable 
– May not account for all interactions between variables 
– “All models are wrong; but some are useful.” 

     – George E. P. Box 
 

• What do we do with probabilistic models? 
– We (or our agents) need to reason about unknown variables, given 

evidence 
– Example: explanation (diagnostic reasoning) 
– Example: prediction (causal reasoning) 
– Example: value of information 
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Ghostbusters, Revisited 

• Let’s say we have two distributions: 
– Prior distribution over ghost location: P(G) 

• Let’s say this is uniform 
– Sensor reading model: P(R | G) 

• Given: we know what our sensors do 
• R = reading color measured at (1,1) 
• E.g. P(R = yellow | G=(1,1)) = 0.1 

 
• We can calculate the posterior distribution 

P(G|r) over ghost locations given a reading 
using Bayes’ rule: 
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The Chain Rule 
 
 

• Trivial decomposition: 
 

 
 

 
• With assumption of conditional independence: 

 
 
 
 

• Bayes’ nets / graphical models help us express conditional 
independence assumptions 
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Model for Ghostbusters 

T B G P(T,B,G) 

+t +b +g 0.16 
+t +b g 0.16 
+t b +g 0.24 
+t b g 0.04 

t +b +g 0.04 
t +b g 0.24 
t b +g 0.06 
t b g 0.06 

Reminder: ghost is hidden, 
sensors are noisy 
 
T: Top sensor is red 
B: Bottom sensor is red 
G: Ghost is in the top 

 
Queries: 

 P( +g) = ?? 
P( +g | +t) = ?? 
P( +g | +t, -b) = ?? 

 
Problem: joint 

 distribution too 
 large / complex 
 

 

Joint Distribution 



Ghostbusters Chain Rule 

T B G P(T,B,G) 

+t +b +g 0.16 
+t +b g 0.16 
+t b +g 0.24 
+t b g 0.04 

t +b +g 0.04 
t +b g 0.24 
t b +g 0.06 
t b g 0.06 

Each sensor depends only 
on where the ghost is 
 
That means, the two sensors are 
conditionally independent, given the 
ghost position 
 
T: Top square is red 
B: Bottom square is red 
G: Ghost is in the top 

 
Givens: 

 P( +g ) = 0.5 
 P( +t  | +g ) = 0.8 

P( +t  | g ) = 0.4 
P( +b | +g ) = 0.4 
P( +b | g ) = 0.8 
 
 
 

P(T,B,G) = P(G) P(T|G) P(B|G) 



Bayes’ Nets: Big Picture 
• Two problems with using full joint distribution tables as our 

probabilistic models: 
– Unless there are only a few variables, the joint is WAY too big to 

represent explicitly 
– Hard to learn (estimate) anything empirically about more than a few 

variables at a time 
 

• Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities) 
– More properly called graphical models 
– We describe how variables locally interact 
– Local interactions chain together to give global, indirect interactions 
– For now, we’ll be vague about how these interactions are specified 
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Example Bayes’ Net: Insurance 



Example Bayes’ Net: Car 
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Graphical Model Notation 
 

• Nodes: variables (with domains) 
– Can be assigned (observed) or 

unassigned (unobserved) 
 

• Arcs: interactions 
– Indicate “direct influence” between 

variables 
– Formally: encode conditional 

independence (more later) 
 

• For now: imagine that arrows mean 
direct causation (in general, they 
don’t!) 
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Example: Coin Flips 

X1 X2 Xn 

• N independent coin flips 
 
 
 
 

• No interactions between variables: absolute 
independence 
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Example: Traffic 

• Variables: 
– R: It rains 
– T: There is traffic 

 
• Model 1: independence 

 
• Model 2: rain causes traffic 

 
• Would an agent using model 2 better? 

 

R 

T 
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Example: Traffic II 
• Let’s build a causal graphical model 

 
• Variables 

– T: Traffic 
– R: It rains 
– L: Low pressure 
– D: Roof drips 
– B: Ballgame 
– C: Cavity 
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Bayes’ Net Semantics 
• Let’s formalize the semantics of a Bayes’ 

net 
 

• A set of nodes, one per variable X 
 

• A directed, acyclic graph 
 

• A conditional distribution for each node 
– A collection of distributions over X, one for each 

combination of parents’ values 
 
 
 

– CPT: conditional probability table 
– Description of a noisy “causal” process 

 

A1 

X 

An 

A Bayes net = Topology (graph) + Local Conditional Probabilities 
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Probabilities in BNs 
• Bayes’ nets implicitly encode joint distributions 

– As a product of local conditional distributions 
– To see what probability a BN gives to a full assignment, multiply all 

the relevant conditionals together: 
 
 
 

– Example: 
 
 
 

 
• This lets us reconstruct any entry of the full joint 
• Not every BN can represent every joint distribution 

– The topology enforces certain conditional independencies 
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Example: Coin Flips 

 

h 0.5 

t 0.5 

h 0.5 

t 0.5 

h 0.5 

t 0.5 

X1 X2 Xn 

Only distributions whose variables are absolutely independent can be 
represented by a Bayes’ net with no arcs. 
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Example: Traffic 

 

R 

T 

  +r 1/4 

r 3/4 

 +r   +t 3/4 

t 1/4 

r   +t 1/2 

t 1/2 
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Example: Alarm Network 

Burglary EarthQk 

Alarm 

John 
calls 

Mary 
calls 

B P(B) 

+b 0.001 

b 0.999 

E P(E) 

+e 0.002 

e 0.998 

B E A P(A|B,E) 

+b +e +a 0.95 
+b +e a 0.05 
+b e +a 0.94 
+b e a 0.06 

b +e +a 0.29 
b +e a 0.71 
b e +a 0.001 
b e a 0.999 

A J P(J|A) 

+a +j 0.9 
+a j 0.1 

a +j 0.05 
a j 0.95 

A M P(M|A) 

+a +m 0.7 
+a m 0.3 

a +m 0.01 
a m 0.99 



Example: Alarm Network 

Burglary EarthQk 

Alarm 

John 
calls 

Mary 
calls 

P(B) 

0.001 

P(E) 

0.002 

B E P(A|B,E) 

+b +e 0.95 
+b e 0.94 

b +e 0.29 
b e 0.001 A P(J|A) 

+a 0.9 
a 0.05 

A P(M|A) 

+a 0.7 
a 0.01 



Bayes’ Nets 
• So far: how a Bayes’ net encodes a joint distribution 

 
 

• Next: how to answer queries about that distribution 
– Key idea: conditional independence 
– Main goal: answer queries about conditional independence and influence 

 
 

• After that: how to answer numerical queries (inference) 
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Bayes’ Net Semantics 
• Let’s formalize the semantics of a Bayes’ 

net 
 

• A set of nodes, one per variable X 
 

• A directed, acyclic graph 
 

• A conditional distribution for each node 
– A collection of distributions over X, one for each 

combination of parents’ values 
 
 
 

– CPT: conditional probability table 
– Description of a noisy “causal” process 

 

A1 

X 

An 

A Bayes net = Topology (graph) + Local Conditional Probabilities 
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Example: Alarm Network 

Burglary Earthqk 

Alarm 

John 
calls 

Mary 
calls 

B P(B) 

+b 0.001 

b 0.999 

E P(E) 

+e 0.002 

e 0.998 

B E A P(A|B,E) 

+b +e +a 0.95 
+b +e a 0.05 
+b e +a 0.94 
+b e a 0.06 

b +e +a 0.29 
b +e a 0.71 
b e +a 0.001 
b e a 0.999 

A J P(J|A) 

+a +j 0.9 
+a j 0.1 

a +j 0.05 
a j 0.95 

A M P(M|A) 

+a +m 0.7 
+a m 0.3 

a +m 0.01 
a m 0.99 



Building the (Entire) Joint 
• We can take a Bayes’ net and build any entry from the 

full joint distribution it encodes 
 
 
 
 

– Typically, there’s no reason to build ALL of it 
– We build what we need on the fly 

 
• To emphasize: every BN over a domain implicitly 

defines a joint distribution over that domain, specified 
by local probabilities and graph structure 
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Size of a Bayes’ Net 
• How big is a joint distribution over N Boolean variables? 

2N 

 
• How big is an N-node net if nodes have up to k parents? 

O(N * 2k+1) 
 
• Both give you the power to calculate 
• BNs: Huge space savings! 
• Also easier to elicit local CPTs 
• Also turns out to be faster to answer queries (coming) 
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Bayes’ Nets So Far 
• We now know: 

– What is a Bayes’ net? 
– What joint distribution does a Bayes’ net encode? 

 
• Now: properties of that joint distribution (independence) 

– Key idea: conditional independence 
– Last class: assembled BNs using an intuitive notion of 

conditional independence as causality 
– Today: formalize these ideas 
– Main goal: answer queries about conditional independence 

and influence 
 

• Next: how to compute posteriors quickly (inference) 
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Inference by Enumeration 

• Given unlimited time, inference in BNs is easy 
• Recipe: 
– State the marginal probabilities you need 
– Figure out ALL the atomic probabilities you need 
– Calculate and combine them 

• Example: 

3 

B E 

A 

J M 



Example: Enumeration 
• In this simple method, we only need the BN to synthesize the 

joint entries 
 
 
 
 
 
 
 
 

P(+m | +b, +e)? 
 

4 

B E 
A 

J M 



• P(+m | +b, +e)? 
• P(+m, +b, +e) / P(+b, +e) 

 
P(+m, +b, +e)  =  
    P(+b)P(+e)P(+a|+b,+e)P(+m|+a) +  
   P(+b)P(+e)P(-a|+b,+e)P(+m|-a)  

 
Find  P(-m, +b, +e) 

Or 
Find  P(+b, +e)   

B E 
A 

J M 



Assume a= true. What is P(B,E)? 

• P(B,E|+a) =? 
 
 
 

 

Burglary EarthQk 

Alarm 

John 
calls 

Mary 
calls 

P(B) 

0.001 

P(E) 

0.002 

B E P(A|B,E) 

+b +e 0.95 

+b e 0.94 

b +e 0.29 

b e 0.001 A P(J|A) 

+a 0.9 

a 0.05 

A P(M|A) 

+a 0.7 

a 0.01 



Inference by Enumeration? 
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Variable Elimination 

• Why is inference by enumeration so slow? 
– You join up the whole joint distribution before you sum out 

the hidden variables 
– You end up repeating a lot of work! 

 

• Idea: interleave joining and marginalizing! 
– Called “Variable Elimination” 
– Still NP-hard, but usually much faster than inference by 

enumeration 
 

• We’ll need some new notation to define VE 
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The Chain Rule 
 
 

• Trivial decomposition: 
 

 
 

 
• With assumption of conditional independence: 

 
 
 
 

• Bayes’ nets / graphical models help us express conditional 
independence assumptions 
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Conditional Independence 

• Reminder: independence 
– X and Y are independent if 

 
 

– X and Y are conditionally independent given Z 
 
 

– (Conditional) independence is a property of a 
distribution 

 
3 
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Topological semantics 

•  A node is conditionally independent of its non-
descendants given its parents 

•  A node is conditionally independent of all other nodes in 
the network given its parents, children, and children’s 
parents (also known as its Markov blanket) 

•  The method called d-separation can be applied to decide 
whether a set of nodes X is independent of another set Y, 
given a third set Z 



Independence in a BN 
• Important question about a BN: 
– Are two nodes independent given certain evidence? 
– If yes, can prove using algebra (tedious in general) 
– If no, can prove with a counter example 
– Example: 

 
 
 

– Question: are X and Z necessarily independent? 
• Answer: no.  Example: low pressure causes rain, which causes 

traffic. 
• X can influence Z, Z can influence X (via Y) 
• Addendum: they could be independent: how? 

X Y Z 



Causal Chains 
• This configuration is a “causal chain” 

 
 
 
 
 

– Is X independent of Z given Y? 
 
 
 
 
 

– Evidence along the chain “blocks” the influence 

X Y Z 

Yes! 

X: Low pressure 

Y: Rain 

Z: Traffic 
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Common Cause 
• Another basic configuration: two 

effects of the same cause 
– Are X and Z independent? 

 
– Are X and Z independent given Y? 

 
 
 
 
 

– Observing the cause blocks influence 
between effects. 

X 

Y 

Z 

Yes! 

Y: Project due 

X: Newsgroup 
busy 

Z: Lab full 
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Common Effect 

• Last configuration: two causes of one 
effect (v-structures) 
– Are X and Z independent? 

• Yes: the ballgame and the rain cause traffic, but 
they are not correlated 

• Still need to prove they must be (try it!) 

– Are X and Z independent given Y? 
• No: seeing traffic puts the rain and the ballgame 

in competition as explanation? 

– This is backwards from the other cases 
• Observing an effect activates influence between 

possible causes. 

 

X 

Y 

Z 

X: Raining 

Z: Ballgame 

Y: Traffic 
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The General Case 

• Any complex example can be analyzed using these 
three canonical cases 
 

• General question: in a given BN, are two variables 
independent (given evidence)? 
 

• Solution: analyze the graph 
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Reachability 
• Recipe: shade evidence nodes 

 
• Attempt 1: if two nodes are connected 

by an undirected path not blocked by a 
shaded node, they are conditionally 
independent 
 

• Almost works, but not quite 
– Where does it break? 
– Answer: the v-structure at T doesn’t count 

as a link in a path unless “active” 

R 

T 

B 

D 

L 
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Reachability (D-Separation) 
• Question: Are X and Y 

conditionally independent given 
evidence vars {Z}? 
– Yes, if X and Y “separated” by Z 
– Look for active paths from X to Y 
– No active paths = independence! 

 

• A path is active if each triple is 
active: 
– Causal chain A  B  C where B is 

unobserved (either direction) 
– Common cause A  B  C where B is 

unobserved 
– Common effect (aka v-structure) 
 A  B  C where B or one of its 

descendents is observed 
  

• All it takes to block a path is a 
single inactive segment 

 
  

Active Triples Inactive Triples 



Example 

 

Yes 

11 

R 

T 

B 

T’ 



Example 

• Variables: 
– R: Raining 
– T: Traffic 
– D: Roof drips 
– S: I’m sad 

• Questions: 
 

T 

S 

D 

R 

Yes 
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Causality? 
• When Bayes’ nets reflect the true causal patterns: 

– Often simpler (nodes have fewer parents) 
– Often easier to think about 
– Often easier to elicit from experts 

 
• BNs need not actually be causal 

– Sometimes no causal net exists over the domain 
– E.g. consider the variables Traffic and Drips 
– End up with arrows that reflect correlation, not causation 

 
• What do the arrows really mean? 

– Topology may happen to encode causal structure 
– Topology only guaranteed to encode conditional independence 
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Example: Traffic 

• Basic traffic net 
• Let’s multiply out the joint 

R 

T 

   r 1/4 
r 3/4 

 r    t 3/4 
t 1/4 

r    t 1/2 
t 1/2 

   r    t 3/16 
   r t 1/16 

r    t 6/16 
r t 6/16 
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Example: Reverse Traffic 

• Reverse causality? 

T 

R 

   t 9/16 
t 7/16 

 t    r 1/3 
r 2/3 

t    r 1/7 
r 6/7 

   r    t 3/16 
   r t 1/16 

r    t 6/16 
r t 6/16 
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Example: Coins 

• Extra arcs don’t prevent representing independence, 
just allow non-independence 

h 0.5 
t 0.5 

h 0.5 
t 0.5 

X1 X2 

h 0.5 
t 0.5 

h | h 0.5 
t | h 0.5 

X1 X2 

h | t 0.5 
t | t 0.5 

17 

Adding unneeded arcs isn’t 
wrong, it’s just inefficient 



Changing Bayes’ Net Structure 
• The same joint distribution can be encoded in many different 

Bayes’ nets 
– Causal structure tends to be the simplest 

 
• Analysis question: given some edges, what other edges do you 

need to add? 
– One answer: fully connect the graph 
– Better answer: don’t make any false conditional independence 

assumptions 
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Example: Alternate Alarm 

19 

Burglary Earthquake 

Alarm 

John calls Mary calls 

John calls Mary calls 

Alarm 

Burglary Earthquake 

If we reverse the edges, we 
make different conditional 
independence assumptions 

To capture the same joint 
distribution, we have to add 
more edges to the graph 



Summary 
• Bayes nets compactly encode joint distributions 

 
• Guaranteed independencies of distributions can be 

deduced from BN graph structure 
 

• D-separation gives precise conditional independence 
guarantees from graph alone 
 

• A Bayes’ net’s joint distribution may have further 
(conditional) independence that is not detectable until 
you inspect its specific distribution 
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