Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 - George E. P. Box
- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information

Ghostbusters, Revisited

- Let's say we have two distributions:
 - Prior distribution over ghost location: P(G)
 - Let's say this is uniform
 - Sensor reading model: P(R | G)
 - Given: we know what our sensors do
 - R = reading color measured at (1,1)
 - E.g. P(R = yellow | G=(1,1)) = 0.1
- We can calculate the posterior distribution P(G|r) over ghost locations given a reading using Bayes' rule:

 $P(g|r) \propto P(r|g)P(g)$

0.11	0.11	0.11
0.11	0.11	0.11
0.11	0.11	0.11

The Chain Rule

 $P(X_1, X_2, \dots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$

- Trivial decomposition:
 P(Traffic, Rain, Umbrella) =
 P(Rain)P(Traffic|Rain)P(Umbrella|Rain, Traffic)
- With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =P(Rain)P(Traffic|Rain)P(Umbrella|Rain)

• Bayes' nets / graphical models help us express conditional independence assumptions

Model for Ghostbusters

- Reminder: ghost is hidden, sensors are noisy
- T: Top sensor is red
 B: Bottom sensor is red
 G: Ghost is in the top
- Queries:
 P(+g) = ??
 P(+g | +t) = ??
 P(+g | +t, -b) = ??
- Problem: joint distribution too large / complex

Joint Distribution

Т	В	G	P(T,B,G)
+t	+b	+g	0.16
+t	+b	Гg	0.16
+t	−b	+g	0.24
+t	−b	¬g	0.04
t	+b	+g	0.04
−t	+b	Гg	0.24
t	_b	+g	0.06
−t	−b	¬g	0.06

Ghostbusters Chain Rule

- Each sensor depends only on where the ghost is
- That means, the two sensors are conditionally independent, given the ghost position
- T: Top square is red
 B: Bottom square is red
 G: Ghost is in the top
- Givens:

$$P(+g) = 0.5$$

$$P(+t | +g) = 0.8$$

$$P(+t | \neg g) = 0.4$$

$$P(+b | +g) = 0.4$$

$$P(+b | \neg g) = 0.8$$

P(T,B,G) = P(G) P(T|G) P(B|G)

Т	В	G	P(T,B,G)
+t	+b	+g	0.16
+t	+b	¬g	0.16
+t	_b	+g	0.24
+t	−b	¬g	0.04
-t	+b	+g	0.04
-t	+b	¬g	0.24
—t	—b	+g	0.06
-t	_b	¬g	0.06

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For now, we'll be vague about how these interactions are specified

Example Bayes' Net: Insurance

Example Bayes' Net: Car

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)
- For now: imagine that arrows mean direct causation (in general, they don't!)

Example: Coin Flips

• N independent coin flips

• No interactions between variables: absolute independence

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic
- Model 1: independence
- Model 2: rain causes traffic
- Would an agent using model 2 better?

Example: Traffic II

- Let's build a causal graphical model
- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity

Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

 $P(X|a_1\ldots a_n)$

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

– Example:

 $P(+cavity, +catch, \neg toothache)$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
 The topology enforces certain conditional independencies

Example: Coin Flips

P(h,h,t,h) =

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs. 21

Example: Traffic

 $P(+r,\neg t) =$

Example: Alarm Network

B	P(B)					
+b	0.001	Bur	glary		Ea	rthQk
−b	0.999		Y			
	•			Alarm	n)	
		John calls				Mary calls
Α	J	P(J A)		A	Μ	P(M A)
+a	+j	0.9		+a	+m	0.7
+a	_j	0.1		+a	−m	0.3
a	+j	0.05		−a	+m	0.01
−a	_j	0.95		−a	−¬m	0.99

E	P(E)
+e	0.002
e	0.998

В	Е	А	P(A B,E)
+b	+e	+a	0.95
+b	+e	−a	0.05
+b	$\neg e$	+a	0.94
+b	$\neg e$	−a	0.06
−b	+e	+a	0.29
−b	+e	−a	0.71
−b	¬е	+a	0.001
−b	−e	−a	0.999

Example: Alarm Network

Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution
 - Key idea: conditional independence
 - Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)

Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

 $P(X|a_1\ldots a_n)$

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Example: Alarm Network

B	P(B)					
+b	0.001	Bur	glary		Ea	irthqk
−b	0.999		Y			
				Alarm	ı)	>
		John calls				Mary calls
A	J	P(J A)		A	Μ	P(M A)
+a	+j	0.9		+a	+m	0.7
+a	_j	0.1		+a	−m	0.3
−a	+j	0.05		−a	+m	0.01
−a	_j	0.95		−a	−m	0.99

Ε	P(E)
+e	0.002
−e	0.998

В	Е	А	P(A B,E)
+b	+e	+a	0.95
+b	+e	−a	0.05
+b	−e	+a	0.94
+b	$\neg e$	−a	0.06
−b	+e	+a	0.29
−b	+e	−a	0.71
−b	¬е	+a	0.001
−b	−e	−a	0.999

Building the (Entire) Joint

• We can take a Bayes' net and build any entry from the full joint distribution it encodes

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- Typically, there's no reason to build ALL of it
- We build what we need on the fly
- To emphasize: every BN over a domain implicitly defines a joint distribution over that domain, specified by local probabilities and graph structure

Size of a Bayes' Net

- How big is a joint distribution over N Boolean variables? • 2^{N}
- How big is an N-node net if nodes have up to k parents? • $O(N * 2^{k+1})$
- Both give you the power to calculate $P(X_1, X_2, ..., X_n)$ •

- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also turns out to be faster to answer queries (coming)

Bayes' Nets So Far

- We now know:
 - What is a Bayes' net?
 - What joint distribution does a Bayes' net encode?
- Now: properties of that joint distribution (independence)
 - Key idea: conditional independence
 - Last class: assembled BNs using an intuitive notion of conditional independence as causality
 - Today: formalize these ideas
 - Main goal: answer queries about conditional independence and influence
- Next: how to compute posteriors quickly (inference)

Inference by Enumeration

- Given unlimited time, inference in BNs is easy
- Recipe:
 - State the marginal probabilities you need
 - Figure out ALL the atomic probabilities you need
 - Calculate and combine them
- Example:

$$P(+b|+j,+m) = \frac{P(+b,+j,+m)}{P(+j,+m)}$$

Example: Enumeration

• In this simple method, we only need the BN to synthesize the joint entries

P(+b,+j,+m) = P(+b)P(+e)P(+a|+b,+e)P(+j|+a)P(+m|+a)+ P(+b)P(+e)P(-a|+b,+e)P(+j|-a)P(+m|-a)+ P(+b)P(-e)P(+a|+b,-e)P(+j|+a)P(+m|+a)+ P(+b)P(-e)P(-a|+b,-e)P(+j|-a)P(+m|-a)(B) (E)

P(+m | +b, +e)?

- P(+m | +b, +e)?
- P(+m, +b, +e) / P(+b, +e)

P(+m, +b, +e) = P(+b)P(+e)P(+a|+b,+e)P(+m|+a) + P(+b)P(+e)P(-a|+b,+e)P(+m|-a)

Find P(-m, +b, +e) Or Find P(+b, +e)

Assume a= true. What is P(B,E)?

• P(B,E|+a) = ?

Inference by Enumeration?

Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables
 - You end up repeating a lot of work!
- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration
- We'll need some new notation to define VE

The Chain Rule

 $P(X_1, X_2, \dots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$

- Trivial decomposition:
 P(Traffic, Rain, Umbrella) =
 P(Rain)P(Traffic|Rain)P(Umbrella|Rain, Traffic)
- With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =P(Rain)P(Traffic|Rain)P(Umbrella|Rain)

• Bayes' nets / graphical models help us express conditional independence assumptions

Conditional Independence

- Reminder: independence
 - X and Y are independent if

$$\forall x, y \ P(x, y) = P(x)P(y) \ \neg \neg \neg \rightarrow \ X \bot\!\!\!\!\perp Y$$

– X and Y are conditionally independent given Z

$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) - \rightarrow X \perp Y|Z$$

- (Conditional) independence is a property of a distribution

Topological semantics

- A node is conditionally independent of its nondescendants given its parents
- A node is **conditionally independent** of all other nodes in the network given its parents, children, and children's parents (also known as its **Markov blanket**)
- The method called **d-separation** can be applied to decide whether a set of nodes X is independent of another set Y, given a third set Z

Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:

- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they *could* be independent: how?

Causal Chains

• This configuration is a "causal chain"

$$(X) \rightarrow (Y) \rightarrow (Z)$$

P(x, y, z) = P(x)P(y|x)P(z|y)

X: Low pressure Y: Rain Z: Traffic

– Is X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$
$$= P(z|y)$$
Yes!

- Evidence along the chain "blocks" the influence

Common Cause

Another basic configuration: two effects of the same cause
Are X and Z independent?

- Are X and Z independent given Y? $P(z|x,y) = \frac{P(x,y,z)}{P(x,y)} = \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$ = P(z|y)Yes!

Y: Project due X: Newsgroup busy

Z: Lab full

 Observing the cause blocks influence between effects.

Common Effect

- Last configuration: two causes of one effect (v-structures)
 - Are X and Z independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)
 - Are X and Z independent given Y?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation?
 - This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

X: Raining Z: Ballgame Y: Traffic

The General Case

- Any complex example can be analyzed using these three canonical cases
- General question: in a given BN, are two variables independent (given evidence)?
- Solution: analyze the graph

Reachability

- Recipe: shade evidence nodes
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent
- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn't count as a link in a path unless "active"

Reachability (D-Separation)

- Question: Are X and Y conditionally independent given evidence vars {Z}?
 - Yes, if X and Y "separated" by Z
 - Look for active paths from X to Y
 - No active paths = independence!
- A path is active if each triple is active:
 - Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
 - Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
 - Common effect (aka v-structure) $A \rightarrow B \leftarrow C$ where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment

Example

$R \bot B \qquad Yes$ $R \bot B | T$ $R \bot B | T'$

Example

- Variables:
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I'm sad
- Questions:
 - $T \bot D$ $T \bot D | R$ Yes $T \bot D | R, S$

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology only guaranteed to encode conditional independence

Example: Traffic

- Basic traffic net
- Let's multiply out the joint

Example: Reverse Traffic

• Reverse causality?

r	t	3/16
٢	「t	1/16
٦r	t	6/16
٦r	−t	6/16

Example: Coins

• Extra arcs don't prevent representing independence, just allow non-independence

 Adding unneeded arcs isn't wrong, it's just inefficient

tlt

0.5

Changing Bayes' Net Structure

- The same joint distribution can be encoded in many different Bayes' nets
 - Causal structure tends to be the simplest
- Analysis question: given some edges, what other edges do you need to add?
 - One answer: fully connect the graph
 - Better answer: don't make any false conditional independence assumptions

Example: Alternate Alarm

Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution