Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
- May not account for every variable
- May not account for all interactions between variables
- "All models are wrong; but some are useful." - George E. P. Box
- What do we do with probabilistic models?
- We (or our agents) need to reason about unknown variables, given evidence
- Example: explanation (diagnostic reasoning)
- Example: prediction (causal reasoning)
- Example: value of information

Ghostbusters, Revisited

- Let's say we have two distributions:
- Prior distribution over ghost location: $\mathrm{P}(\mathrm{G})$
- Let's say this is uniform
- Sensor reading model: $\mathrm{P}(\mathrm{R} \mid \mathrm{G})$
- Given: we know what our sensors do
- $\mathrm{R}=$ reading color measured at $(1,1)$
- E.g. $\mathrm{P}(\mathrm{R}=$ yellow $\mid \mathrm{G}=(1,1))=0.1$
- We can calculate the posterior distribution $\mathrm{P}(\mathrm{G} \mid \mathrm{r})$ over ghost locations given a reading using Bayes' rule:

$$
P(g \mid r) \propto P(r \mid g) P(g)
$$

rne chain Rute

$$
P\left(X_{1}, X_{2}, \ldots X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots
$$

- Trivial decomposition:
$P($ Traffic, Rain, Umbrella $)=$
$P($ Rain $) P($ Traffic \mid Rain $) P($ Umbrella|Rain, Traffic)
- With assumption of conditional independence:
$P($ Traffic, Rain, Umbrella $)=$

$$
P(\text { Rain }) P(\text { Traffic } \mid \text { Rain }) P(\text { Umbrella } \mid \text { Rain })
$$

- Bayes' nets / graphical models help us express conditional independence assumptions

Model for Ghostbusters

- Reminder: ghost is hidden, sensors are noisy

Joint Distribution

- T: Top sensor is red B: Bottom sensor is red G: Ghost is in the top
- Queries:
$P(+g)=?$?
$\mathrm{P}(+\mathrm{g} \mid+\mathrm{t})=$??
$\mathrm{P}(+\mathrm{g} \mid+\mathrm{t},-\mathrm{b})=?$?
- Problem: joint distribution too large / complex

T	B	G	$\mathrm{P}(\mathrm{T}, \mathrm{B}, \mathrm{G})$
+t	+b	+g	0.16
+t	+b	$\neg \mathrm{g}$	0.16
+t	$\neg \mathrm{b}$	+g	0.24
+t	$\neg \mathrm{b}$	$\neg \mathrm{g}$	0.04
$\neg \mathrm{t}$	+b	+g	0.04
$\neg \mathrm{t}$	+b	$\neg \mathrm{g}$	0.24
$\neg \mathrm{t}$	$\neg \mathrm{b}$	+g	0.06
$\neg \mathrm{t}$	$\neg \mathrm{b}$	$\neg \mathrm{g}$	0.06

Ghostbusters Chain Rule

- Each sensor depends only on where the ghost is

$$
\mathrm{P}(\mathrm{~T}, \mathrm{~B}, \mathrm{G})=\mathrm{P}(\mathrm{G}) \mathrm{P}(\mathrm{~T} \mid \mathrm{G}) \mathrm{P}(\mathrm{~B} \mid \mathrm{G})
$$

- That means, the two sensors are conditionally independent, given the ghost position
- T : Top square is red

B: Bottom square is red
G: Ghost is in the top

- Givens:
$\mathrm{P}(+\mathrm{g})=0.5$
$\mathrm{P}(+\mathrm{t} \mid+\mathrm{g})=0.8$
$\mathrm{P}(+\mathrm{t} \mid \neg \mathrm{g})=0.4$
$\mathrm{P}(+\mathrm{b} \mid+\mathrm{g})=0.4$
$\mathrm{P}(+\mathrm{b} \mid \neg \mathrm{g})=0.8$

T	B	G	$\mathrm{P}(\mathrm{T}, \mathrm{B}, \mathrm{G})$
+t	+b	+g	0.16
+t	+b	$\neg \mathrm{g}$	0.16
+t	$\neg \mathrm{b}$	+g	0.24
+t	$\neg \mathrm{b}$	$\neg \mathrm{g}$	0.04
$\neg \mathrm{t}$	+b	+g	0.04
$\neg \mathrm{t}$	+b	$\neg \mathrm{g}$	0.24
$\neg \mathrm{t}$	$\neg \mathrm{b}$	+g	0.06
$\neg \mathrm{t}$	$\neg \mathrm{b}$	$\neg \mathrm{g}$	0.06

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
- Unless there are only a few variables, the joint is WAY too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- More properly called graphical models
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions
- For now, we'll be vague about how these interactions are specified

Example Bayes' Net: Insurance

Example Bayes' Net: Car

Graphical Model Notation

- Nodes: variables (with domains)
- Can be assigned (observed) or unassigned (unobserved)

- Arcs: interactions
- Indicate "direct influence" between variables
- Formally: encode conditional independence (more later)
- For now: imagine that arrows mean direct causation (in general, they

Example: Coin Flips

- N independent coin flips

- No interactions between variables: absolute independence

Example: Traffic

- Variables:
- R: It rains
- T: There is traffic
- Model 1: independence

- Model 2: rain causes traffic
- Would an agent using model 2 better?

Example: Traffic II

- Let's build a causal graphical model
- Variables
- T: Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity

Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

$P\left(X \mid A_{1} \ldots A_{n}\right)$

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net $=$ Topology $($ graph $)+$ Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

- Example:

$$
P(+ \text { cavity, +catch, } \neg \text { toothache })
$$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
- The topology enforces certain conditional independencies

Example: Coin Flips

Only distributions whose variables are absolutely independent can be represented by a Bayes'net with no arcs.

Example: Traffic

Example: Alarm Network

B	$P(B)$
$+b$	0.001
$\neg \mathrm{~b}$	0.999

A	J	$\mathrm{P}(\mathrm{J} \mid \mathrm{A})$
+a	+j	0.9
+a	$\neg \mathrm{j}$	0.1
$\neg \mathrm{a}$	+j	0.05
$\neg \mathrm{a}$	$\neg \mathrm{j}$	0.95

\mathbf{A}	\mathbf{M}	$\mathbf{P}(\mathbf{M} \mid \mathbf{A})$
+a	+m	0.7
+a	$\neg \mathrm{m}$	0.3
$\neg \mathrm{a}$	+m	0.01
$\neg \mathrm{a}$	$\neg \mathrm{m}$	0.99

E	$P(E)$
+e	0.002
$\neg \mathrm{e}$	0.998

B	E	A	$\mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{E})$
+b	+e	+a	0.95
+b	+e	$\neg \mathrm{a}$	0.05
+b	$\neg \mathrm{e}$	+a	0.94
+b	$\neg \mathrm{e}$	$\neg \mathrm{a}$	0.06
$\neg \mathrm{~b}$	+e	+a	0.29
$\neg \mathrm{~b}$	+e	$\neg \mathrm{a}$	0.71
$\neg \mathrm{~b}$	$\neg \mathrm{e}$	+a	0.001
$\neg \mathrm{~b}$	$\neg \mathrm{e}$	$\neg \mathrm{a}$	0.999

Example: Alarm Network

Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution
- Key idea: conditional independence
- Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)

Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

$P\left(X \mid A_{1} \ldots A_{n}\right)$

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net $=$ Topology $($ graph $)+$ Local Conditional Probabilities

Example: Alarm Network

B	$P(B)$
$+b$	0.001
$\neg b$	0.999

A	J	$\mathrm{P}(\mathrm{J} \mid \mathrm{A})$
+a	+j	0.9
+a	$\neg \mathrm{j}$	0.1
$\neg \mathrm{a}$	+j	0.05
$\neg \mathrm{a}$	$\neg \mathrm{j}$	0.95

\mathbf{A}	\mathbf{M}	$\mathbf{P}(\mathbf{M} \mid \mathbf{A})$
+a	+m	0.7
+a	$\neg \mathrm{m}$	0.3
$\neg \mathrm{a}$	+m	0.01
$\neg \mathrm{a}$	$\neg \mathrm{m}$	0.99

E	$P(E)$
+e	0.002
$\neg \mathrm{e}$	0.998

B	E	A	$\mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{E})$
+b	+e	+a	0.95
+b	+e	$\neg \mathrm{a}$	0.05
+b	$\neg \mathrm{e}$	+a	0.94
+b	$\neg \mathrm{e}$	$\neg \mathrm{a}$	0.06
$\neg \mathrm{~b}$	+e	+a	0.29
$\neg \mathrm{~b}$	+e	$\neg \mathrm{a}$	0.71
$\neg \mathrm{~b}$	$\neg \mathrm{e}$	+a	0.001
$\neg \mathrm{~b}$	$\neg \mathrm{e}$	$\neg \mathrm{a}$	0.999

Building the (Entire) Joint

- We can take a Bayes' net and build any entry from the full joint distribution it encodes

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

- Typically, there's no reason to build ALL of it
- We build what we need on the fly
- To emphasize: every BN over a domain implicitly defines a joint distribution over that domain, specified by local probabilities and graph structure

Size of a Bayes' Net

- How big is a joint distribution over N Boolean variables? 2^{N}
- How big is an N-node net if nodes have up to k parents?

$$
\mathrm{O}\left(\mathrm{~N} * 2^{\mathrm{k}+1}\right)
$$

- Both give you the power to calculate $\quad P\left(X_{1}, X_{2}, \ldots X_{n}\right)$
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also turns out to be faster to answer queries (coming)

Bayes' Nets So Far

- We now know:
- What is a Bayes' net?
- What joint distribution does a Bayes' net encode?
- Now: properties of that joint distribution (independence)
- Key idea: conditional independence
- Last class: assembled BNs using an intuitive notion of conditional independence as causality
- Today: formalize these ideas
- Main goal: answer queries about conditional independence and influence
- Next: how to compute posteriors quickly (inference)

Inference by Enumeration

- Given unlimited time, inference in BNs is easy
- Recipe:
- State the marginal probabilities you need
- Figure out ALL the atomic probabilities you need
- Calculate and combine them
- Example:

$$
\begin{aligned}
& P(+b \mid+j,+m)= \\
& \frac{P(+b,+j,+m)}{P(+j,+m)}
\end{aligned}
$$

Example: Enumeration

- In this simple method, we only need the BN to synthesize the joint entries

$$
\begin{aligned}
& P(+b,+j,+m)= \\
& P(+b) P(+e) P(+a \mid+b,+e) P(+j \mid+a) P(+m \mid+a)+ \\
& P(+b) P(+e) P(-a \mid+b,+e) P(+j \mid-a) P(+m \mid-a)+ \\
& P(+b) P(-e) P(+a \mid+b,-e) P(+j \mid+a) P(+m \mid+a)+ \\
& P(+b) P(-e) P(-a \mid+b,-e) P(+j \mid-a) P(+m \mid-a)
\end{aligned}
$$

- $\mathrm{P}(+\mathrm{m} \mid+\mathrm{b},+\mathrm{e})$?
- $\mathrm{P}(+\mathrm{m},+\mathrm{b},+\mathrm{e}) / \mathrm{P}(+\mathrm{b},+\mathrm{e})$
$\mathrm{P}(+\mathrm{m},+\mathrm{b},+\mathrm{e})=$

$$
\begin{aligned}
& \mathrm{P}(+\mathrm{b}) \mathrm{P}(+\mathrm{e}) \mathrm{P}(+\mathrm{a} \mid+\mathrm{b},+\mathrm{e}) \mathrm{P}(+\mathrm{m} \mid+\mathrm{a})+ \\
& \mathrm{P}(+\mathrm{b}) \mathrm{P}(+\mathrm{e}) \mathrm{P}(-\mathrm{a} \mid+\mathrm{b},+\mathrm{e}) \mathrm{P}(+\mathrm{m} \mid-\mathrm{a})
\end{aligned}
$$

Find $\mathrm{P}(-\mathrm{m},+\mathrm{b},+\mathrm{e})$
Or
Find $\mathrm{P}(+\mathrm{b},+\mathrm{e})$

Assume $\mathrm{a}=$ true. What is $\mathrm{P}(\mathrm{B}, \mathrm{E})$?

- $\mathrm{P}(\mathrm{B}, \mathrm{E} \mid+\mathrm{a})=$?

B	E	$P(A \mid B, E)$
+b	+e	0.95
+b	$\neg \mathrm{e}$	0.94
$\neg \mathrm{~b}$	+e	0.29
$\neg \mathrm{~b}$	$\neg \mathrm{e}$	0.001

Inference by Enumeration?

Variable Elimination

- Why is inference by enumeration so slow?
- You join up the whole joint distribution before you sum out the hidden variables
- You end up repeating a lot of work!
- Idea: interleave joining and marginalizing!
- Called "Variable Elimination"
- Still NP-hard, but usually much faster than inference by enumeration
- We'll need some new notation to define VE

rne chain Rute

$$
P\left(X_{1}, X_{2}, \ldots X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots
$$

- Trivial decomposition:
$P($ Traffic, Rain, Umbrella $)=$
$P($ Rain $) P($ Traffic \mid Rain $) P($ Umbrella|Rain, Traffic)
- With assumption of conditional independence:
$P($ Traffic, Rain, Umbrella $)=$

$$
P(\text { Rain }) P(\text { Traffic } \mid \text { Rain }) P(\text { Umbrella } \mid \text { Rain })
$$

- Bayes' nets / graphical models help us express conditional independence assumptions

Conditional Independence

- Reminder: independence
-X and Y are independent if

$$
\forall x, y P(x, y)=P(x) P(y) \rightarrow-\rightarrow \quad X \Perp Y
$$

-X and Y are conditionally independent given Z
$\forall x, y, z P(x, y \mid z)=P(x \mid z) P(y \mid z)-\rightarrow X \Perp Y \mid Z$

- (Conditional) independence is a property of a distribution

Topological semantics

- A node is conditionally independent of its nondescendants given its parents
- A node is conditionally independent of all other nodes in the network given its parents, children, and children's parents (also known as its Markov blanket)
- The method called d-separation can be applied to decide whether a set of nodes X is independent of another set Y , given a third set Z

Independence in a BN

- Important question about a BN :
- Are two nodes independent given certain evidence?
- If yes, can prove using algebra (tedious in general)
- If no, can prove with a counter example
- Example:

- Question: are X and Z necessarily independent?
- Answer: no. Example: low pressure causes rain, which causes traffic.
- X can influence Z, Z can influence X (via Y)
- Addendum: they could be independent: how?

Causal Chains

- This configuration is a "causal chain"

- Is X independent of Z given Y ?

$$
\begin{aligned}
P(z \mid x, y)=\frac{P(x, y, z)}{P(x, y)} & =\frac{P(x) P(y \mid x) P(z \mid y)}{P(x) P(y \mid x)} \\
& =P(z \mid y) \quad \text { Yes! }
\end{aligned}
$$

- Evidence along the chain "blocks" the influence

Common Cause

- Another basic configuration: two effects of the same cause
- Are X and Z independent?
- Are X and Z independent given Y ?

$$
\begin{aligned}
P(z \mid x, y)=\frac{P(x, y, z)}{P(x, y)} & =\frac{P(y) P(x \mid y) P(z \mid y)}{P(y) P(x \mid y)} \\
& =P(z \mid y) \quad \text { Yes! }
\end{aligned}
$$

Y: Project due
X: Newsgroup busy
Z: Lab full

- Observing the cause blocks influence between effects.

Conn Efinent

- Last configuration: two causes of one effect (v-structures)
- Are X and Z independent?
- Yes: the ballgame and the rain cause traffic, but they are not correlated
- Still need to prove they must be (try it!)

- Are X and Z independent given Y ?
- No: seeing traffic puts the rain and the ballgame in competition as explanation?
- This is backwards from the other cases

X : Raining
Z: Ballgame
Y: Traffic

- Observing an effect activates influence between possible causes.

The General Case

- Any complex example can be analyzed using these three canonical cases
- General question: in a given BN, are two variables independent (given evidence)?
- Solution: analyze the graph

Reachability

- Recipe: shade evidence nodes
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent
- Almost works, but not quite
- Where does it break?
- Answer: the v-structure at T doesn't count
 as a link in a path unless "active"

Reachability (D-Separation)

- Question: Are X and Y conditionally independent given evidence vars $\{Z\}$?
- Yes, if X and Y "separated" by Z
- Look for active paths from X to Y
- No active paths = independence!
- A path is active if each triple is active:
- Causal chain $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C}$ where B is unobserved (either direction)
- Common cause $\mathrm{A} \leftarrow \mathrm{B} \rightarrow \mathrm{C}$ where B is unobserved
- Common effect (aka v-structure) $\mathrm{A} \rightarrow \mathrm{B} \leftarrow \mathrm{C}$ where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment
Active Triples

Inactive Triples

Example

$$
\begin{array}{lr}
R \Perp B & \text { Yes } \\
R \Perp B \mid T & \\
R \Perp B \mid T^{\prime} &
\end{array}
$$

Example

- Variables:
-R : Raining
- T: Traffic
- D: Roof drips
- S: I'm sad
- Questions:

$$
\begin{aligned}
& T \Perp D \\
& T \Perp D \mid R \quad \text { Yes } \\
& T \Perp D \mid R, S
\end{aligned}
$$

Causality?

- When Bayes' nets reflect the true causal patterns:
- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts
- BNs need not actually be causal
- Sometimes no causal net exists over the domain
- E.g. consider the variables Traffic and Drips
- End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
- Topology may happen to encode causal structure
- Topology only guaranteed to encode conditional independence

Example: Traffic

- Basic traffic net
- Let's multiply out the joint

$P(T, R)$

r	t	$3 / 16$
r	$\neg \mathrm{t}$	$1 / 16$
$\neg r$	t	$6 / 16$
$\neg \mathrm{r}$	$\neg \mathrm{t}$	$6 / 16$

Example: Reverse Traffic

- Reverse causality?

$P(T, R)$

r	t	$3 / 16$
r	$\neg \mathrm{t}$	$1 / 16$
$\neg \mathrm{r}$	t	$6 / 16$
$\neg \mathrm{r}$	$\neg \mathrm{t}$	$6 / 16$

Example: Coins

- Extra arcs don't prevent representing independence, just allow non-independence

$\mathrm{h} \mid \mathrm{t}$	0.5
$\mathrm{t} \mid \mathrm{t}$	0.5

- Adding unneeded arcs isn't wrong, it's just inefficient

Changing Bayes' Net Structure

- The same joint distribution can be encoded in many different Bayes' nets
- Causal structure tends to be the simplest
- Analysis question: given some edges, what other edges do you need to add?
- One answer: fully connect the graph
- Better answer: don't make any false conditional independence assumptions

Example: Alternate Alarm

If we reverse the edges, we make different conditional independence assumptions

To capture the same joint distribution, we have to add more edges to the graph

Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

