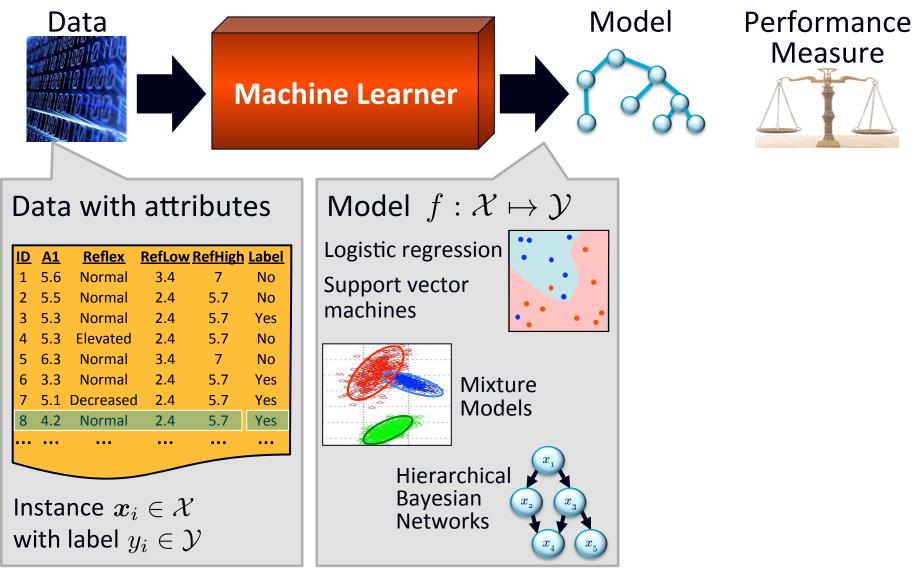
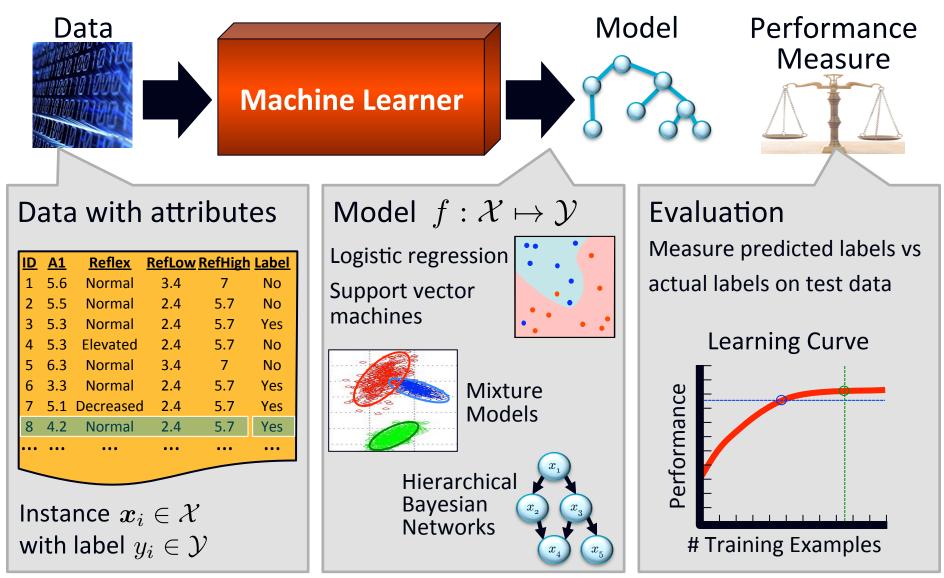


Data with attributes

<u>ID</u>	<u>A1</u>	<u>Reflex</u>	RefLow	RefHigh	<u>Label</u>		
1	5.6	Normal	3.4	7	No		
2	5.5	Normal	2.4	5.7	No		
3	5.3	Normal	2.4	5.7	Yes		
4	5.3	Elevated	2.4	5.7	No		
5	6.3	Normal	3.4	7	No		
6	3.3	Normal	2.4	5.7	Yes		
7	5.1	Decreased	2.4	5.7	Yes		
8	4.2	Normal	2.4	5.7	Yes		
•••	•••	•••	•••	•••	•••		
Instance $x_i \in \mathcal{X}$							

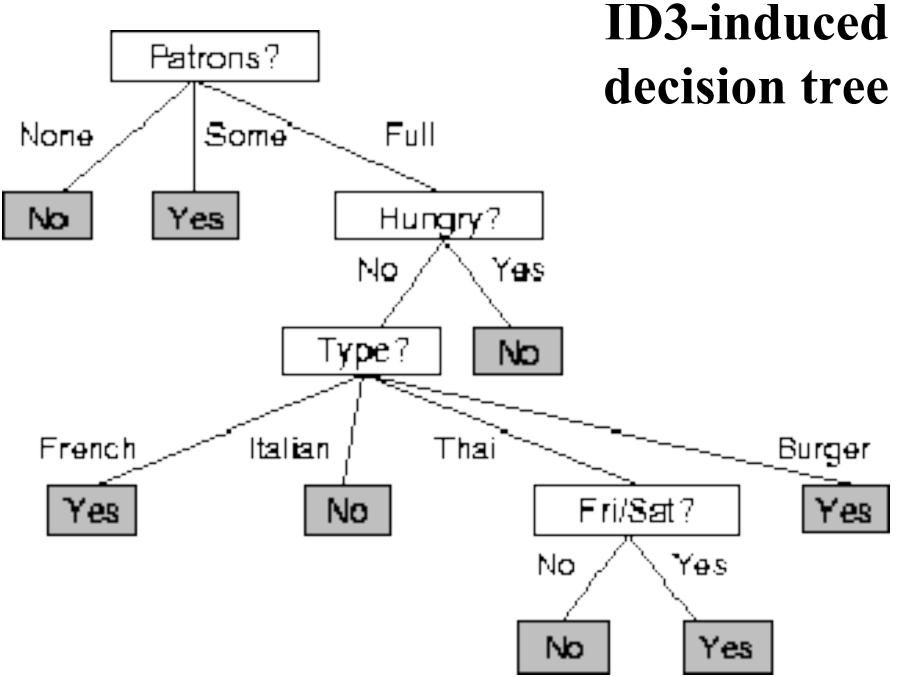
with label $y_i \in \mathcal{X}$

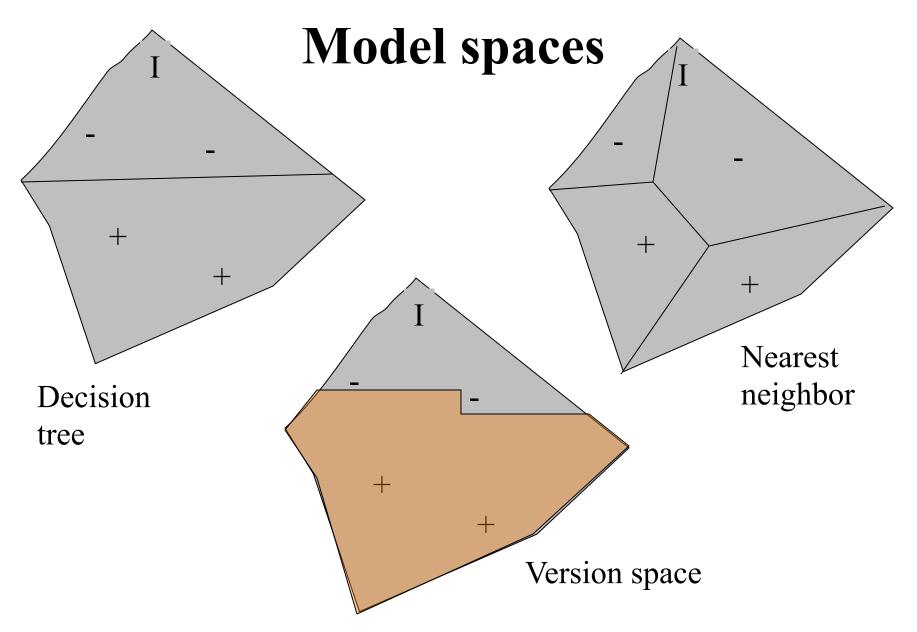




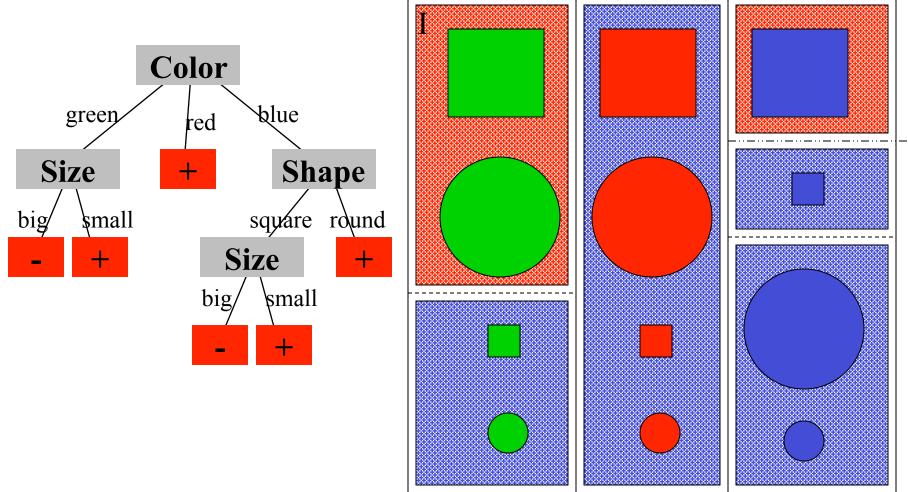
A training set

Ехалорі с	A ti niza tes							Goal			
	t LF,	Bar	۶IJ	Hшл	Pet	Prize	Rein	Res	Туре	돈귴	tirs a light
<i>X</i> ₁	Kes	No	No	Yes	Some	222	No	Kes	£1 ≂ nch	00	Ners -
X 2	Res	No	No	Yes	۩ٮ٦	\$	No	No	Thei	30-60	No
х,	No	Re.s	No	No	Some	\$	No	No	Burger	01_0	Fers
X.	Res	No	Yes	Yes	£⊔∎	\$	No	No	Thei	10-30	Kes
X_3	Kes	No	Yes	No	ភិ⊔ញ	555	No	lies	សាតារក	>60	No
Xo	No	Re.s	No	Fes	Some	\$\$	K e s –	Res.	nninn	0_10	K a s
X7	No	Ne.s	No	No	None	<u>\$</u>	K e s	No	Burger	0_10	No
Xs	No	No	No	Yes	Some	\$\$	R e s	Res.	Thei	0_10	Fers
X.,	No	Ne.s	Yes	No	۩ٮ٦	\$	K e s –	No	Burger	>60	No
X	Res	Res	Pes	Pes	⊼ս∎	222	No	les.	Indian	19-30	No
<i>X</i> 11	No	No	No	No	None	<u>s</u>	No	No	Thei	0_10	No
Х _Б	Res	Ne.s	Yes	Yes	۩ٮ٦	2	No	No	Burger	30-60	Res





Decision tree-induced partition – example



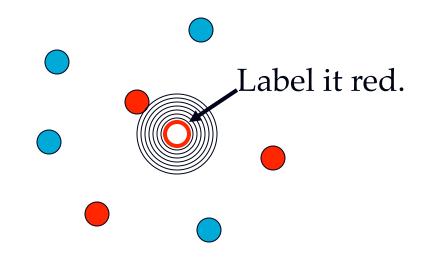
k-Nearest Neighbor Instance-Based Learning

Some material adapted from slides by Andrew Moore, CMU.

Visit <u>http://www.autonlab.org/tutorials/</u> for Andrew's repository of Data Mining tutorials.

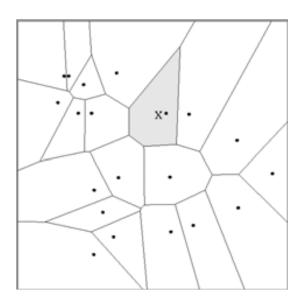
1-Nearest Neighbor

- One of the simplest of all machine learning classifiers
- Simple idea: label a new point the same as the closest known point



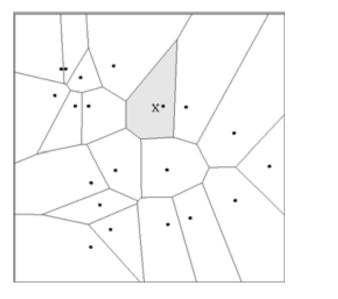
1-Nearest Neighbor

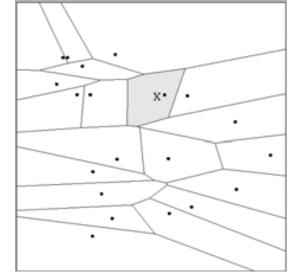
A type of instance-based learning
Also known as "memory-based" learning
Forms a Voronoi tessellation of the instance space



Distance Metrics

Different metrics can change the decision surface





 $Dist(a,b) = (a_1 - b_1)^2 + (a_2 - b_2)^2$ $Dist(a,b) = (a_1 - b_1)^2 + (3a_2 - 3b_2)^2$

Standard Euclidean distance metric:

- Two-dimensional: $Dist(a,b) = sqrt((a_1 b_1)^2 + (a_2 b_2)^2)$
- Multivariate: Dist(a,b) = sqrt($\sum (a_i b_i)^2$)

Adapted from "Instance-Based Bearning" lecture slides by Andrew Moore, CMU.

Four Aspects of an Instance-Based Learner:

- 1. A distance metric
- 2. How many nearby neighbors to look at?
- 3. A weighting function (optional)
- 4. How to fit with the local points?

Adapted from "Instance-Based Learning" lecture slides by Andrew Moore, **14**MU.

1-NN's Four Aspects as an Instance-Based Learner:

- 1. A distance metric
 - Euclidian
- 2. How many nearby neighbors to look at?
 One
- 3. A weighting function (optional)
 - Unused
- 4. How to fit with the local points?
 - Just predict the same output as the nearest neighbor.

Adapted from "Instance-Based Learning" lecture slides by Andrew Moore, 16MU.

Zen Gardens

Mystery of renowned zen garden revealed [CNN Article]

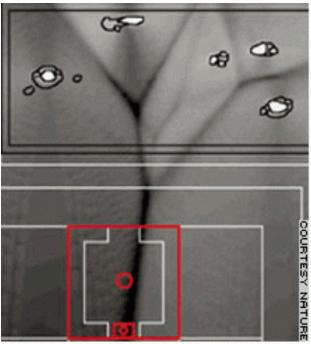
Thursday, September 26, 2002 Posted: 10:11 AM EDT (1411 GMT)

LONDON (Reuters) -- For centuries visitors to the renowned Ryoanji Temple garden in Kyoto, Japan have been entranced and mystified by the simple arrangement of rocks.

The five sparse clusters on a rectangle of raked gravel are said to be pleasing to the eyes of the hundreds of thousands of tourists who visit the garden each year.

Scientists in Japan said on Wednesday they now believe they have discovered its mysterious appeal.

Ryoanji Temple garden in Kyoto



Layout shows the rock clusters (top) and the preferred viewing spot of the garden from the main hall (the circle in the middle of the square).

"We have uncovered the implicit structure of the Ryoanji garden's visual ground and have shown that it includes an abstract, minimalist depiction of natural scenery," said Gert Van Tonder of Kyoto University.

The researchers discovered that the empty space of the garden evokes a hidden image of a branching tree that is sensed by the unconscious mind.

"We believe that the unconscious perception of this pattern contributes to the enigmatic appeal of the garden," Van Tonder added.

He and his colleagues believe that whoever created the garden during the Muromachi era between 1333-1573 knew exactly what they were doing and placed the rocks around the tree image.

By using a concept called medial-axis transformation, the scientists showed that the hidden branched tree converges on the main area from which the garden is viewed.

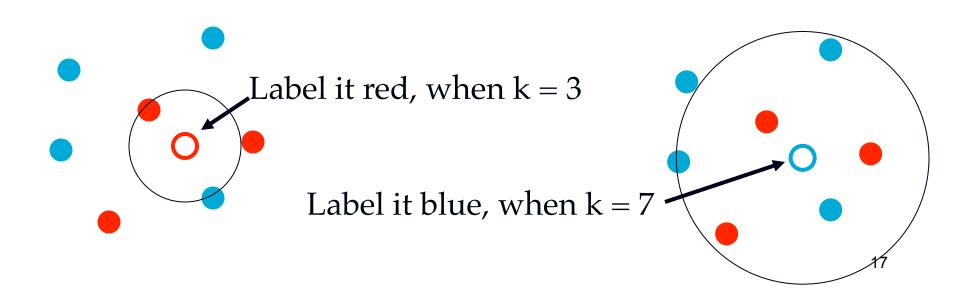
The trunk leads to the prime viewing site in the ancient temple that once overlooked the garden. It is thought that abstract art may have a similar impact.

"There is a growing realisation that scientific analysis can reveal unexpected structural features hidden in controversial abstract paintings," Van Tonder said

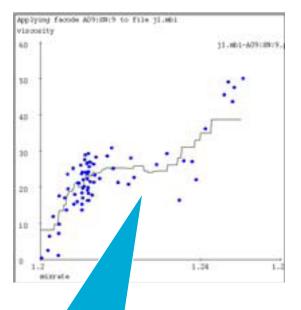
Adapted from "Instance-Based Learning" lecture slides by Andrew Moore, CMU.

k – Nearest Neighbor

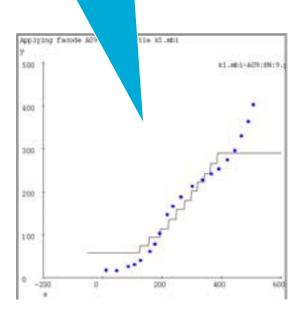
- Generalizes 1-NN to smooth away noise in the labels
- A new point is now assigned the most frequent label of its *k* nearest neighbors

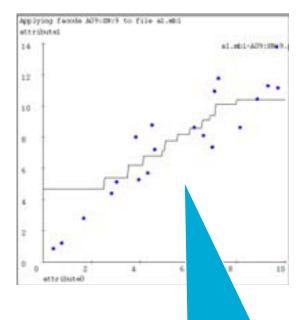


k-Nearest Neighbor (k = 9)



A magnificent job of noise smoothing. Three cheers for 9nearest-neighbor. But the lack of gradients and the jerkiness isn't good. Appalling behavior! Loses all the detail that 1-nearest neighbor would give. The tails are horrible!





Fits much less of the noise, captures trends. But still, frankly, pathetic compared with linear regression.

Adapted from "Instance-Based Learning" lecture slides by Andrew Moore, **1@**MU.

The Naïve Bayes Classifier

Some material adapted from slides by Tom Mitchell, CMU.

The Naïve Bayes Classifier

Recall Bayes rule:

$$P(Y_i | X_j) = \frac{P(Y_i)P(X_j | Y_i)}{P(X_j)}$$

Which is short for:

$$P(Y = y_i | X = x_j) = \frac{P(Y = y_i)P(X = x_j | Y = y_i)}{P(X = x_j)}$$

• We can re-write this as:

$$P(Y = y_i | X = x_j) = \frac{P(Y = y_i)P(X = x_j | Y = y_i)}{\sum_k P(X = x_j | Y = y_k)P(Y = y_k)}$$

20

Deriving Naïve Bayes

Idea: use the training data to directly estimate:

P(X|Y) and P(Y)

Then, we can use these values to estimate $P(Y | X_{new})$ using Bayes rule.

Recall that representing the full joint probability $P(X_1, X_2, ..., X_n | Y)$ is not practical.

Deriving Naïve Bayes

• However, if we make the assumption that the attributes are independent, estimation is easy!

$$P(X_1, \dots, X_n \mid Y) = \prod_i P(X_i \mid Y)$$

- In other words, we assume all attributes are conditionally independent given Y.
 - Often this assumption is violated in practice, but more on that later...

Deriving Naïve Bayes

Let $X = \langle X_1, \dots, X_n \rangle$ and label Y be discrete.

• Then, we can estimate $P(X_i | Y_i)$ and $P(Y_i)$ directly from the training data by counting!

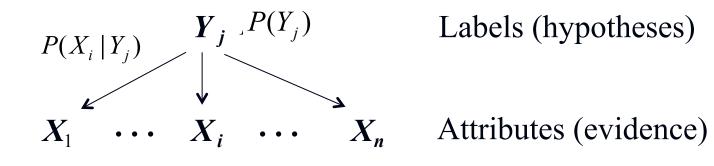
<u>Sky</u>	<u>Temp</u>	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	Forecast	<u>Play?</u>
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
rainy	cold	high	strong	warm	change	no
sunny	warm	high	strong	cool	change	yes

The Naïve Bayes Classifier

Now we have:

$$P(Y = y_j | X_1, \dots, X_n) = \frac{P(Y = y_j) \prod_i P(X_i | Y = y_j)}{\sum_k P(Y = y_k) \prod_i P(X_i | Y = y_k)}$$

which is just a one-level Bayesian Network



• To classify a new point X_{new}:

$$Y_{new} \longleftarrow \arg \max_{y_k} P(Y = y_k) \prod_i P(X_i \mid Y = y_k)$$

The Naïve Bayes Algorithm

For each value y_k

• Estimate $P(Y = y_k)$ from the data.

For each value x_{ij} of each attribute X_i

Estimate
$$P(X_i = x_{ij} | Y = y_k)$$

$$Y_{new} \leftarrow \arg \max_{y_k} P(Y = y_k) \prod_i P(X_i \mid Y = y_k)$$

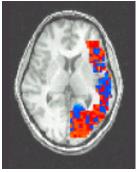
In practice, the independence assumption doesn't often hold true, but Naïve Bayes performs very well despite it.

Naïve Bayes Applications

Text classification

- Which e-mails are spam?
- Which e-mails are meeting notices?
- Which author wrote a document?
- Classifying mental states

Learning P(BrainActivity | WordCategory)



Pairwise Classification Accuracy: 85%

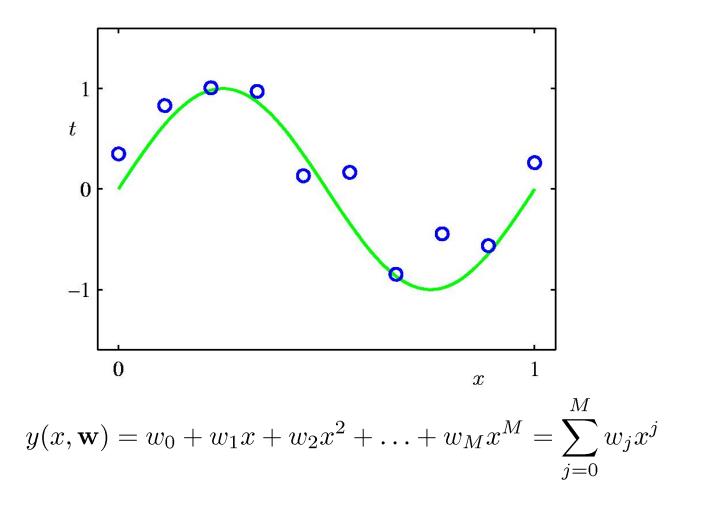
People Words

Animal Words

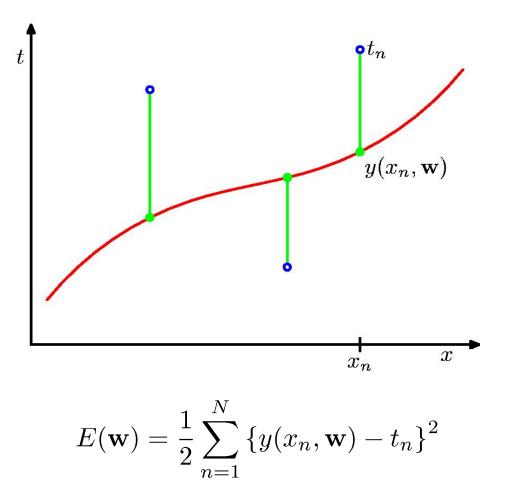
Polynomial Curve Fitting

Slides adapted from Pattern Recognition and Machine Learning by Christopher Bishop

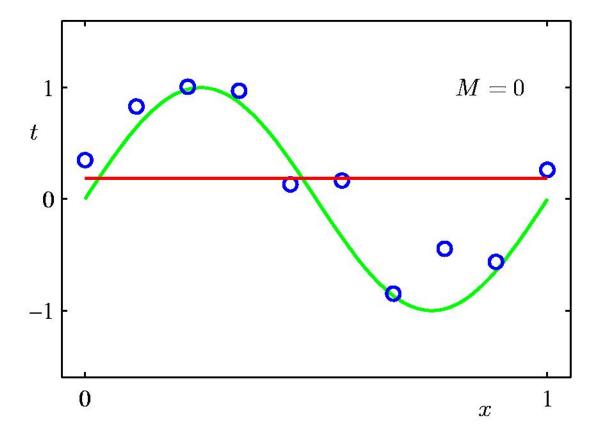
Polynomial Curve Fitting



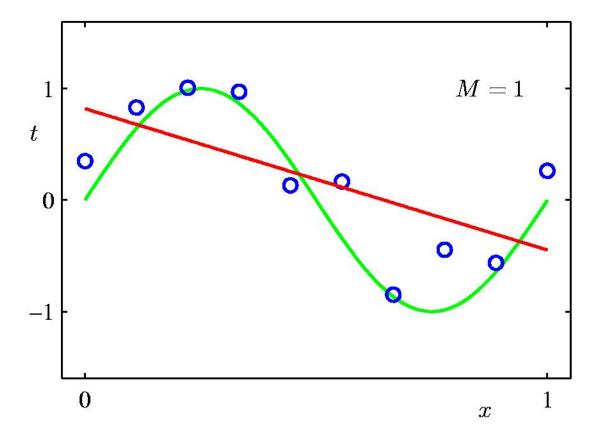
Sum-of-Squares Error Function



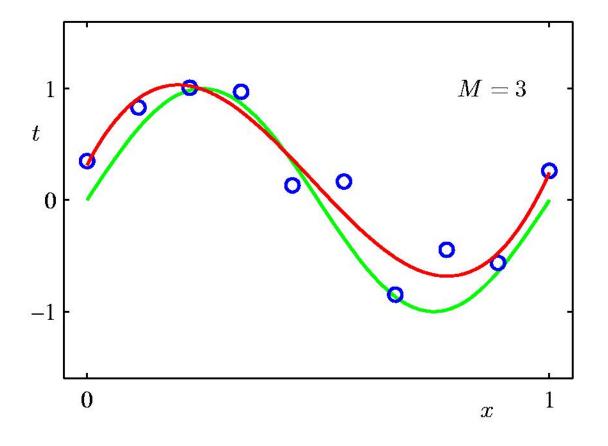
0th Order Polynomial



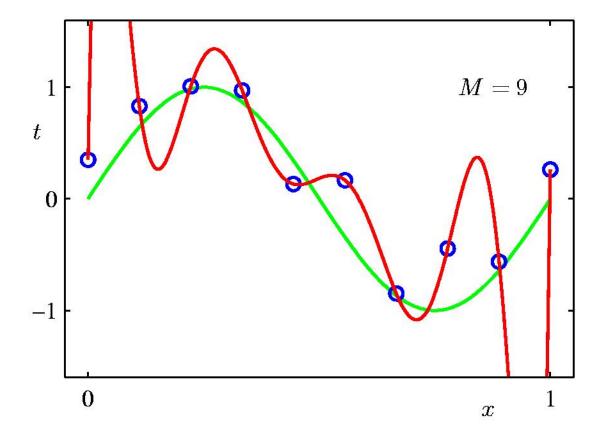
1st Order Polynomial



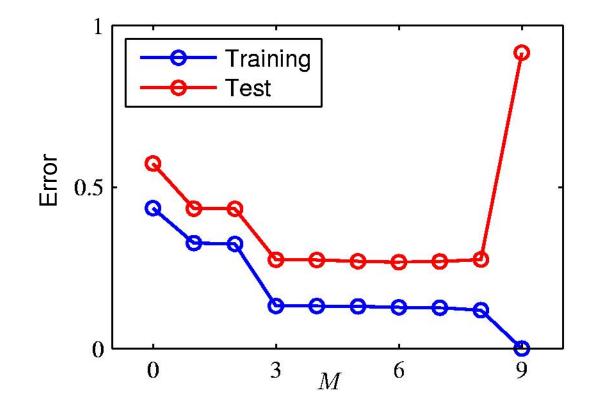
3rd Order Polynomial



9th Order Polynomial



Over-fitting

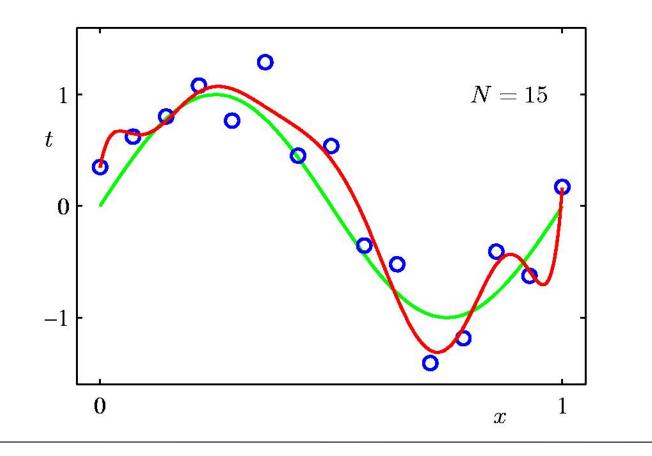


Polynomial Coefficients

	M = 0	M = 1	M=3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^\star				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^\star				125201.43

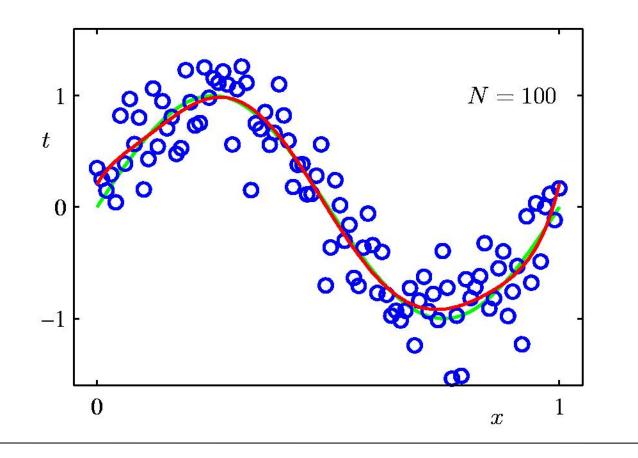
Data Set Size: N = 15

9th Order Polynomial



Data Set Size: N = 100

9th Order Polynomial



Regularization

Penalize large coefficient values

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \left(\|\mathbf{w}\|_2\right)^2$$

$$\begin{split} \mathbf{L_2 \, Norm} \\ \|\mathbf{w}\|_2 &= \sqrt{\sum_i \mathbf{w}_i^2} \quad \underset{\text{``complexity'' of w}}{\text{Measures the}} \end{split}$$

Regularization

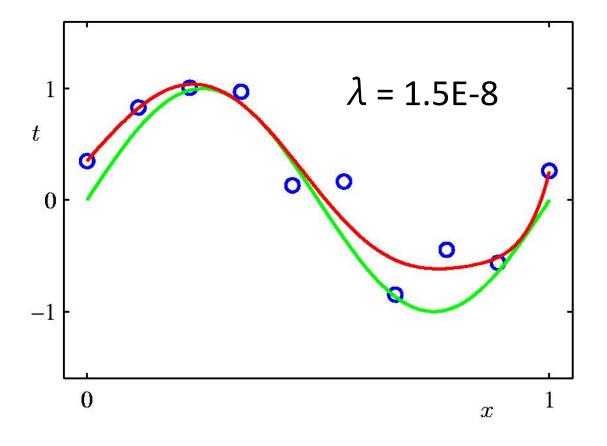
Penalize large coefficient values

 λ regularization parameter higher $\lambda \rightarrow$ more regularization

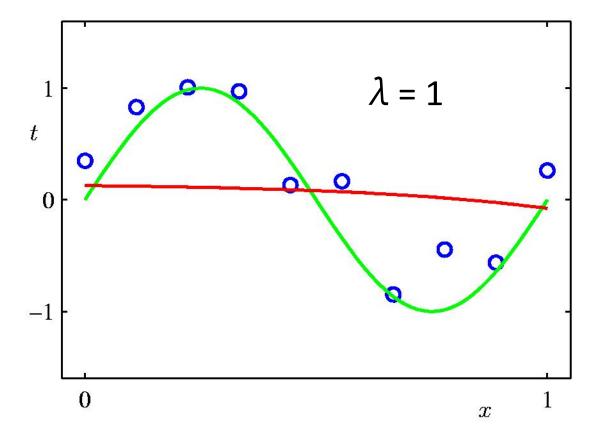
$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \left(\|\mathbf{w}\|_2\right)^2$$
$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \sum_i w_i^2$$

$$\begin{split} \mathbf{L}_2 \, \mathrm{Norm} \\ \|\mathbf{w}\|_2 &= \sqrt{\sum_i \mathbf{w}_i^2} \quad \underset{\text{``complexity'' of w}}{\text{Measures the}} \end{split}$$

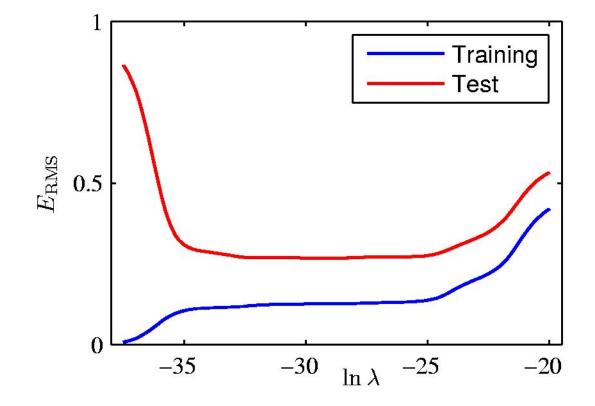
Regularization: $\lambda = 1.5E-8$



Regularization: $\lambda = 1$



Regularization: $E_{\rm RMS}$ vs. $\ln \lambda$



Polynomial Coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^\star	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^\star	48568.31	-31.97	-0.05
w_4^\star	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

Learning via Gradient Descent

λT

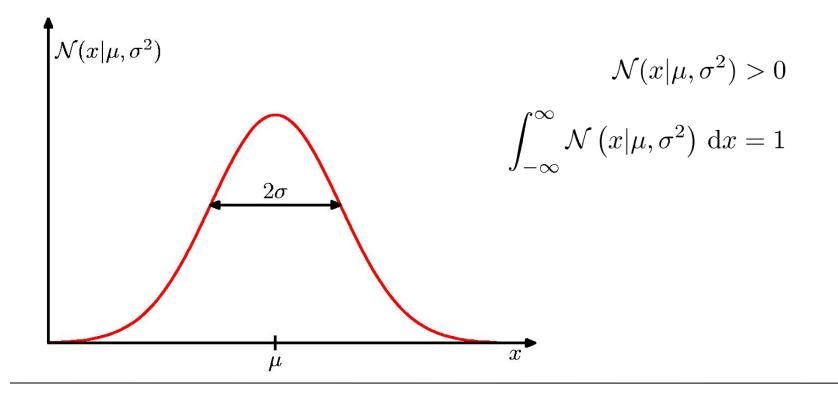
$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(y(x_n, \mathbf{w}) - t_n \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{N} w_j^2$$

$$\nabla_j \tilde{E}(\mathbf{w}) = \sum_{n=1}^N x_n^j \left(y(x_n, \mathbf{w}) - t_n \right) + \lambda w_j$$

Choose w randomly, where $w_j \sim N(0, \sigma^2)$ Repeat until w converges (i.e., $||w - w_{old}|| < \varepsilon$)

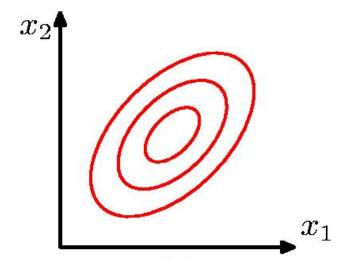
The Gaussian Distribution

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

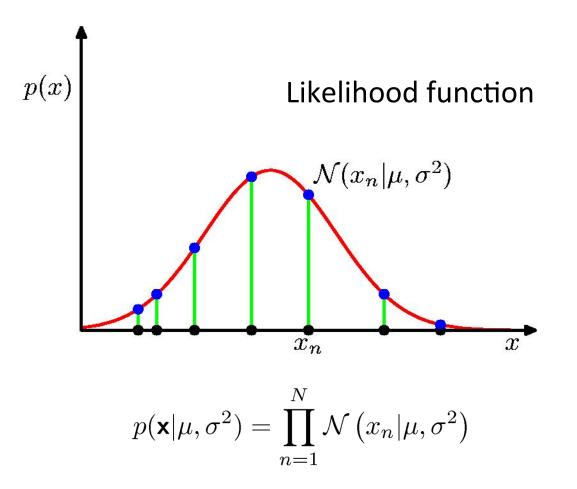


The Multivariate Gaussian

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$



Gaussian Parameter Estimation



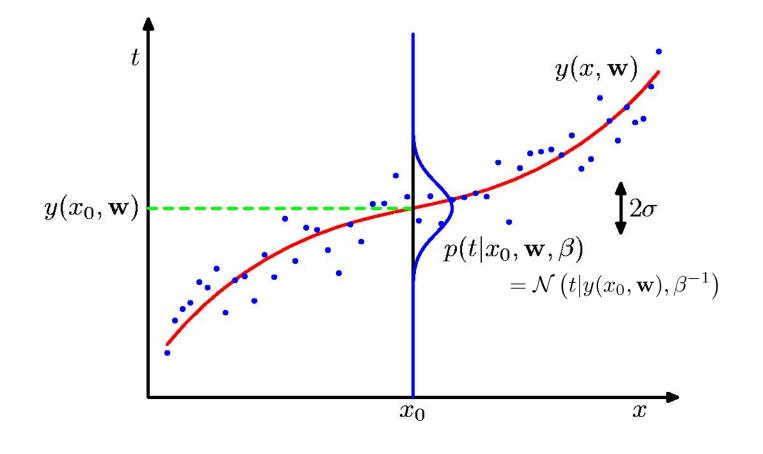
Maximum (Log) Likelihood

$$\ln p\left(\mathbf{x}|\mu,\sigma^{2}\right) = -\frac{1}{2\sigma^{2}}\sum_{n=1}^{N}(x_{n}-\mu)^{2} - \frac{N}{2}\ln\sigma^{2} - \frac{N}{2}\ln(2\pi)$$

a r

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n \qquad \sigma_{\rm ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\rm ML})^2$$

Curve Fitting Re-visited



Maximum Likelihood

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}\left(t_n | y(x_n, \mathbf{w}), \beta^{-1}\right)$$

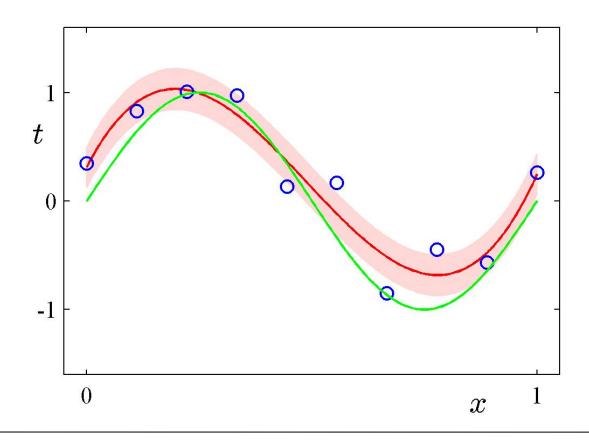
$$\ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = -\underbrace{\frac{\beta}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2}_{\beta E(\mathbf{w})} + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi)$$

Determine \mathbf{w}_{ML} by minimizing sum-of-squares error, $E(\mathbf{w})$.

$$\frac{1}{\beta_{\rm ML}} = \frac{1}{N} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}_{\rm ML}) - t_n\}^2$$

Predictive Distribution

 $p(t|x, \mathbf{w}_{\mathrm{ML}}, \beta_{\mathrm{ML}}) = \mathcal{N}\left(t|y(x, \mathbf{w}_{\mathrm{ML}}), \beta_{\mathrm{ML}}^{-1}\right)$



MAP: A Step towards Bayes

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}\right\}$$

 $p(\mathbf{w}|\mathbf{x},\mathbf{t},\alpha,\beta) \propto p(\mathbf{t}|\mathbf{x},\mathbf{w},\beta)p(\mathbf{w}|\alpha)$

$$\beta \widetilde{E}(\mathbf{w}) = \frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

Determine $\mathbf{w}_{\mathrm{MAP}}$ by minimizing regularized sum-of-squares error, $\widetilde{E}(\mathbf{w})$.

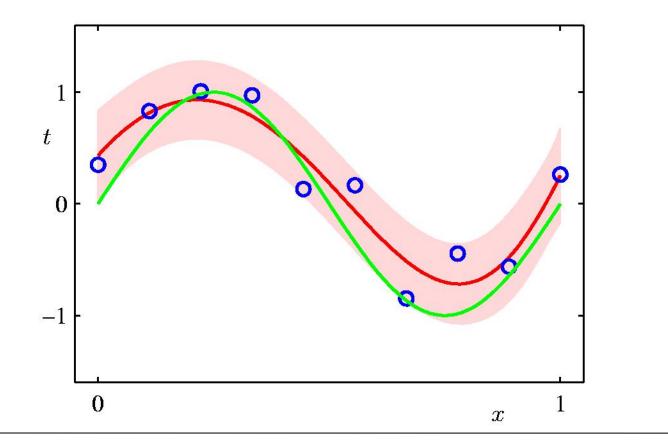
Bayesian Curve Fitting

$$p(t|x, \mathbf{x}, \mathbf{t}) = \int p(t|x, \mathbf{w}) p(\mathbf{w}|\mathbf{x}, \mathbf{t}) \, \mathrm{d}\mathbf{w} = \mathcal{N}\left(t|m(x), s^2(x)\right)$$

$$m(x) = \beta \phi(x)^{\mathrm{T}} \mathbf{S} \sum_{n=1}^{N} \phi(x_n) t_n \qquad s^2(x) = \beta^{-1} + \phi(x)^{\mathrm{T}} \mathbf{S} \phi(x)$$
$$\mathbf{S}^{-1} = \alpha \mathbf{I} + \beta \sum_{n=1}^{N} \phi(x_n) \phi(x_n)^{\mathrm{T}} \qquad \phi(x_n) = \left(x_n^0, \dots, x_n^M\right)^{\mathrm{T}}$$

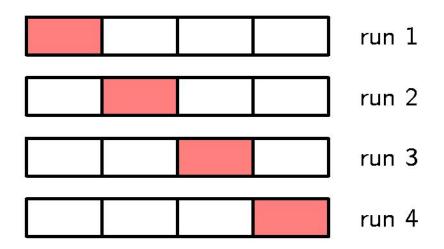
Bayesian Predictive Distribution

 $p(t|x, \mathbf{x}, \mathbf{t}) = \mathcal{N}\left(t|m(x), s^2(x)\right)$

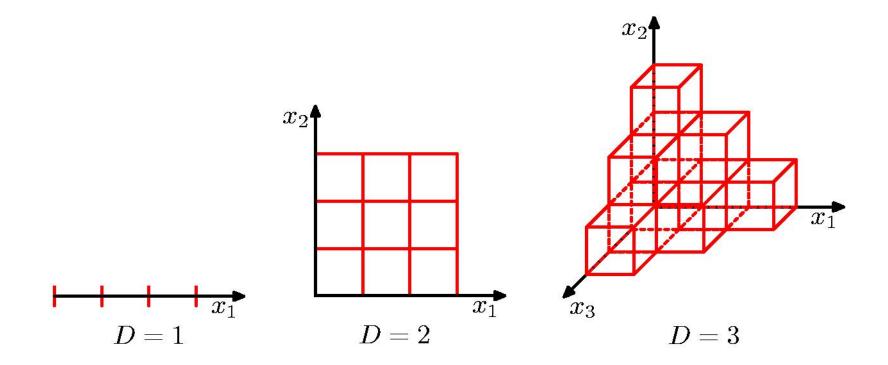


Model Selection

Cross-Validation



Curse of Dimensionality



Curse of Dimensionality

Polynomial curve fitting, M = 3 $y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^{D} w_i x_i + \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j + \sum_{i=1}^{D} \sum_{j=1}^{D} \sum_{k=1}^{D} w_{ijk} x_i x_j x_k$

Gaussian Densities in higher dimensions

