Support Vector Machines and Kernels

Doing Really Well with Linear Decision Surfaces

Adapted from slides by Tim Oates
Cognition, Robotics, and Learning (CORAL) Lab
University of Maryland Baltimore County

Outline

- Prediction
- Why might predictions be wrong?
- Support vector machines
- Doing really well with linear models
- Kernels
- Making the non-linear linear

Supervised ML $=$ Prediction

- Given training instances (x, y)
- Learn a model f
- Such that $f(x)=y$
- Use f to predict y for new x
- Many variations on this basic theme

Why might predictions be wrong?

- True Non-Determinism
- Flip a biased coin
- p (heads) $=\theta$
- Estimate θ
- If $\theta>0.5$ predict heads, else tails
- Lots of ML research on problems like this

Learn a model
Do the best you can in expectation

Why might predictions be wrong?

- Partial Observability
- Something needed to predict y is missing from observation x
- N-bit parity problem
x contains $\mathrm{N}-1$ bits (hard PO)
x contains N bits but learner ignores some of them (soft PO)

Why might predictions be wrong?

- True non-determinism
- Partial observability
- hard, soft
- Representational bias
- Algorithmic bias
- Bounded resources

Representational Bias

- Having the right features (x) is crucial

Support Vector Machines

Doing Really Well with Linear Decision Surfaces

Strengths of SVMs

- Good generalization in theory
- Good generalization in practice
- Work well with few training instances
- Find globally best model
- Efficient algorithms
- Amenable to the kernel trick

Linear Separators

- Training instances
$-\mathrm{x} \in \mathfrak{R}^{\mathrm{n}}$
- $y \in\{-1,1\}$
$\mathrm{w} \in \mathfrak{R}^{\mathrm{n}}$
- $\mathrm{b} \in \mathfrak{R}$

$$
\begin{aligned}
& \text { Math Review } \\
& \text { Inner (dot) product: } \\
& \quad<\mathrm{a}, \mathrm{~b}>=\mathrm{a} \cdot \mathrm{~b}=\sum \mathrm{a}_{\mathrm{i}}^{*} \mathrm{~b}_{\mathrm{i}} \\
& \quad=\mathrm{a}_{1} \mathrm{~b}_{1}+\mathrm{a}_{2} \mathrm{~b}_{2}+\ldots+\mathrm{a}_{\mathrm{n}} \mathrm{~b}_{\mathrm{n}}
\end{aligned}
$$

- Hyperplane
- $<\mathrm{w}, \mathrm{x}>+\mathrm{b}=0$
- $\mathrm{w}_{1} \mathrm{x}_{1}+\mathrm{w}_{2} \mathrm{x}_{2} \ldots+\mathrm{w}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}+\mathrm{b}=0$
- Decision function
$-f(x)=\operatorname{sign}(<w, x>+b)$

Intuitions

$$
\begin{array}{cccccc}
x & x & & 0 & 0 \\
x & x^{x} & 0 & 0 & 0 \\
& x & x & 0 & & 0 \\
x & x & & 0 &
\end{array}
$$

Intuitions

Intuitions

Intuitions

A "Good" Separator

Noise in the Observations

Ruling Out Some Separators

Lots of Noise

Maximizing the Margin

"Fat" Separators

Why Maximize Margin?

- Increasing margin reduces capacity
- Must restrict capacity to generalize
- m training instances
- 2^{m} ways to label them
- What if function class that can separate them all?
- Shatters the training instances
- VC Dimension is largest m such that function class can shatter some set of m points

VC Dimension Example

Bounding Generalization Error

- $R[f]=$ risk, test error
- $R_{\text {emp }}[f]=$ empirical risk, train error
- $\mathrm{h}=\mathrm{VC}$ dimension
- $\mathrm{m}=$ number of training instances
- $\delta=$ probability that bound does not hold
$R[f] \leq R_{\text {emp }}[f]+\sqrt{\frac{1}{m}\left[h\left[\ln \frac{2 m}{h}+1\right]+\ln \frac{4}{\delta}\right]}$

Support Vectors

The Math

- Training instances
- $x \in \mathfrak{R}^{\text {n }}$
- $y \in\{-1,1\}$
- Decision function
- $\mathrm{f}(\mathrm{x})=\operatorname{sign}(<\mathrm{w}, \mathrm{x}>+\mathrm{b})$
$-\mathrm{w} \in \mathfrak{R}^{\mathrm{n}}$
$-\mathrm{b} \in \mathfrak{R}$
- Find w and b that
- Perfectly classify training instances

Assuming linear separability

- Maximize margin

The Math

- For perfect classification, we want
- $y_{i}\left(<w, x_{i}>+b\right) \geq 0$ for all i
- Why?
- To maximize the margin, we want
- w that minimizes $|\mathrm{w}|^{2}$

Dual Optimization Problem

- Maximize over α

$$
=W(\alpha)=\Sigma_{i} \alpha_{i}-1 / 2 \Sigma_{\mathrm{i}, \mathrm{j}} \alpha_{\mathrm{i}} \alpha_{\mathrm{j}} \mathrm{y}_{\mathrm{i}} \mathrm{y}_{\mathrm{j}}<\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}>
$$

- Subject to
- $\alpha_{i} \geq 0$
- $\Sigma_{i} \alpha_{i} y_{i}=0$
- Decision function
$-f(x)=\operatorname{sign}\left(\Sigma_{i} \alpha_{i} y_{i}<x, x_{i}>+b\right)$

What if Data Are Not Perfectly Linearly Separable?

- Cannot find w and b that satisfy
- $y_{i}\left(<w, x_{i}>+b\right) \geq 1$ for all i
- Introduce slack variables ξ_{i}
- $\left.y_{\mathrm{i}}\left(<\mathrm{w}, \mathrm{x}_{\mathrm{i}}\right\rangle+\mathrm{b}\right) \geq 1-\xi_{\mathrm{i}}$ for all i
- Minimize
$-|w|^{2}+C \Sigma \xi_{i}$

Strengths of SVMs

- Good generalization in theory
- Good generalization in practice
- Work well with few training instances
- Find globally best model
- Efficient algorithms
- Amenable to the kernel trick ...

What if Surface is Non-Linear?

Kernel Methods

Making the Non-Linear Linear

When Linear Separators Fail

Mapping into a New Feature Space

$$
\begin{gathered}
\Phi: \mathrm{x} \rightarrow \mathrm{X}=\Phi(\mathrm{x}) \\
\Phi\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{1}{ }^{2}, \mathrm{x}_{2}{ }^{2}, \mathrm{x}_{1} \mathrm{x}_{2}\right)
\end{gathered}
$$

- Rather than run SVM on x_{i}, run it on $\Phi\left(x_{i}\right)$
- Find non-linear separator in input space
- What if $\Phi\left(\mathrm{x}_{\mathrm{i}}\right)$ is really big?
- Use kernels to compute it implicitly! mage tom mimentand

Kernels

- Find kernel K such that
- $K\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left\langle\Phi\left(\mathrm{x}_{1}\right), \Phi\left(\mathrm{x}_{2}\right)>\right.$
- Computing $K\left(x_{1}, x_{2}\right)$ should be efficient, much more so than computing $\Phi\left(\mathrm{x}_{1}\right)$ and $\Phi\left(\mathrm{x}_{2}\right)$
- Use K $\left(x_{1}, x_{2}\right)$ in SVM algorithm rather than $<x_{1}, x_{2}>$
- Remarkably, this is possible

The Polynomial Kernel

$-K\left(x_{1}, x_{2}\right)=<x_{1}, x_{2}>^{2}$

- $\mathrm{x}_{1}=\left(\mathrm{x}_{11}, \mathrm{x}_{12}\right)$
- $x_{2}=\left(x_{21}, x_{22}\right)$
$-<\mathrm{x}_{1}, \mathrm{x}_{2}>=\left(\mathrm{x}_{11} \mathrm{x}_{21}+\mathrm{x}_{12} \mathrm{x}_{22}\right)$
$-<x_{1}, x_{2}>^{2}=\left(\mathrm{x}_{11}{ }^{2} \mathrm{x}_{21}{ }^{2}+\mathrm{x}_{12}{ }^{2} \mathrm{x}_{22}{ }^{2}+2 \mathrm{x}_{11} \mathrm{x}_{12} \mathrm{x}_{21}\right.$ x_{22})
- $\Phi\left(\mathrm{x}_{1}\right)=\left(\mathrm{x}_{11}{ }^{2}, \mathrm{x}_{12}{ }^{2}, \sqrt{2} \mathrm{x}_{11} \mathrm{x}_{12}\right)$
- $\Phi\left(\mathrm{x}_{2}\right)=\left(\mathrm{x}_{21}{ }^{2}, \mathrm{x}_{22}{ }^{2}, \sqrt{2} \mathrm{x}_{21} \mathrm{x}_{22}\right)$
$\square \mathrm{K}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=<\Phi\left(\mathrm{x}_{1}\right), \Phi\left(\mathrm{x}_{2}\right)>$

The Polynomial Kernel

$\Phi(\mathrm{x})$ contains all monomials of degree d

- Useful in visual pattern recognition
- Number of monomials
- 16x16 pixel image
- 10^{10} monomials of degree 5
- Never explicitly compute $\Phi(x)$!
- Variation $\left.-K\left(x_{1}, x_{2}\right)=\left(<x_{1}, x_{2}\right\rangle+1\right)^{2}$

Kernels

- What does it mean to be a kernel?
$-\mathrm{K}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=<\Phi\left(\mathrm{x}_{1}\right), \Phi\left(\mathrm{x}_{2}\right)>$ for some Φ
- What does it take to be a kernel?
- The Gram matrix $\mathrm{G}_{\mathrm{ij}}=\mathrm{K}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$
- Positive definite matrix
$\Sigma_{\mathrm{ij}} \mathrm{c}_{\mathrm{i}} \mathrm{c}_{\mathrm{j}} \mathrm{G}_{\mathrm{ij}} \geq 0$ for $\mathrm{c}_{\mathrm{i}, \mathrm{j}} \mathrm{c}_{\mathrm{j}} \in \mathfrak{R}$
- Positive definite kernel

For all samples of size m, induces a positive definite Gram matrix

A Few Good Kernels

- Dot product kernel
- K $\left(x_{1}, x_{2}\right)=<x_{1}, x_{2}>$
- Polynomial kernel
- $K\left(x_{1}, x_{2}\right)=\left\langle x_{1}, x_{2}\right\rangle^{d} \quad$ (Monomials of degree d)
- $K\left(x_{1}, x_{2}\right)=\left(\left\langle x_{1}, x_{2}\right\rangle+1\right)^{d} \quad$ (All monomials of degree 1,2,..,d)
- Gaussian kernel
- K $\left(x_{1}, x_{2}\right)=\exp \left(-\left|x_{1}-x_{2}\right|^{2} / 2 \sigma^{2}\right)$
- Radial basis functions
- Sigmoid kernel
- $K\left(x_{1}, x_{2}\right)=\tanh \left(<x_{1}, x_{2}>+\boldsymbol{\vartheta}\right)$
- Neural networks
- Establishing "kernel-hood" from first principles is nontrivial

The Kernel Trick

"Given an algorithm which is formulated in terms of a positive definite kernel K_{1}, one can construct an alternative algorithm by replacing K_{1} with another positive definite kernel $\mathrm{K}_{2}{ }^{\prime \prime}$
$>$ SVMs can use the kernel trick

Using a Different Kernel in the Dual Optimization Problem

- For example, using the polynomial kernel with $\mathrm{d}=4$ (including lower-order terms).
- Maximize over α
$\left.=\mathrm{W}(\alpha)=\Sigma_{\mathrm{i}} \alpha_{\mathrm{i}}-1 / 2 \Sigma_{\mathrm{i}, \mathrm{j}} \alpha_{\mathrm{i}} \alpha_{\mathrm{j}} y_{\mathrm{i}} y_{\mathrm{i}}<\lambda, \mathrm{x}_{\mathrm{i}}\right\rangle$
- Subject to
$-\alpha_{i} \geq 0$
$-\Sigma_{i} \alpha_{i} y_{i}=0$
- Decision function
- $\left.f(x)=\operatorname{sign}\left(\Sigma_{i} \alpha_{i} y_{i}<\lambda \quad x_{i}\right\rangle+b\right)$

Exotic Kernels

- Strings
- Trees
- Graphs
- The hard part is establishing kernel-hood

Conclusion

- SVMs find optimal linear separator
- The kernel trick makes SVMs non-linear learning algorithms

