
Proceedings of the Eighteenth National Conference on Artificial Intelligence(AAAI-2002), 
pp. 187-192, Edmonton, Canada, July 2002

Content-Boosted Collaborative Filtering for Improved Recommendations

Prem Melville and Raymond J. Mooney and Ramadass Nagarajan
Department of Computer Sciences

University of Texas
Austin, TX 78712

fmelville,mooney,ramdasg@cs.utexas.edu

Abstract

Most recommender systems use Collaborative Filtering or
Content-based methods to predict new items of interest for
a user. While both methods have their own advantages, indi-
vidually they fail to provide good recommendations in many
situations. Incorporating components from both methods, a
hybrid recommender system can overcome these shortcom-
ings. In this paper, we present an elegant and effective frame-
work for combining content and collaboration. Our approach
uses a content-based predictor to enhance existing user data,
and then provides personalized suggestions through collab-
orative filtering. We present experimental results that show
how this approach,Content-Boosted Collaborative Filtering,
performs better than a pure content-based predictor, pure col-
laborative filter, and a naive hybrid approach.

Introduction
Recommender systems help overcome information overload
by providing personalized suggestions based on a history of
a user’s likes and dislikes. Many on-line stores provide rec-
ommending services e.g. Amazon, CDNOW, BarnesAnd-
Noble, IMDb, etc. There are two prevalent approaches to
building recommender systems — Collaborative Filtering
(CF) and Content-based (CB) recommending. CF systems
work by collecting user feedback in the form of ratings for
items in a given domain and exploit similarities and differ-
ences among profiles of several users in determining how
to recommend an item. On the other hand, content-based
methods provide recommendations by comparing represen-
tations of content contained in an item to representations of
content that interests the user.

Content-based methods can uniquely characterize each
user, but CF still has some key advantages over them (Her-
locker et al. 1999). Firstly, CF can perform in domains
where there is not much content associated with items, or
where the content is difficult for a computer to analyze —
ideas, opinions etc. Secondly a CF system has the ability to
provide serendipitous recommendations, i.e. it can recom-
mend items that are relevant to the user, but do not contain
content from the user’s profile. Because of these reasons, CF
systems have been used fairly successfully to build recom-
mender systems in various domains (Goldberget al. 1992;

Copyright c 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Resnicket al. 1994). However they suffer from two funda-
mental problems:

� Sparsity
Stated simply, most users do not rate most items and
hence the user-item rating matrix is typically very sparse.
Therefore the probability of finding a set of users with
significantly similar ratings is usually low. This is of-
ten the case when systems have a very high item-to-user
ratio. This problem is also very significant when the sys-
tem is in the initial stage of use.

� First-rater Problem
An item cannot be recommended unless a user has rated
it before. This problem applies to new items and also ob-
scure items and is particularly detrimental to users with
eclectic tastes.

We overcome these drawbacks of CF systems by exploit-
ing content information of the items already rated. Our
basic approach uses content-based predictions to convert a
sparse user ratings matrix into a full ratings matrix; and
then uses CF to provide recommendations. In this paper,
we present the framework for this new hybrid approach,
Content-Boosted Collaborative Filtering (CBCF). We apply
this framework in the domain of movie recommendation and
show that our approach performs better than both pure CF
and pure content-based systems.

Domain Description
We demonstrate the working of our hybrid approach in the
domain of movie recommendation. We use the user-movie
ratings from the EachMovie1 dataset, provided by the Com-
paq Systems Research Center. The dataset contains rating
data provided by each user for various movies. User rat-
ings range from zero to five stars. Zero stars indicate ex-
treme dislike for a movie and five stars indicate high praise.
To have a quicker turn-around time for our experiments, we
only used a subset of the EachMovie dataset. This dataset
contains 7,893 randomly selected users and 1,461 movies
for which content was available from the Internet Movie
Database (IMDb)2. The reduced dataset has 299,997 ratings
for 1,408 movies. The average number of votes per user is

1http://research.compaq.com/SRC/eachmovie
2http://www.imdb.com



approximately 38 and the sparsity of the user ratings matrix
is 97.4%.

The content information for each movie was collected
from IMDb using a simple crawler. The crawler follows
the IMDB link provided for every movie in the EachMovie
dataset and collects information from the various links off
the main URL. We represent the content information of ev-
ery movie as a set of slots (features). Each slot is represented
simply as a bag of words. The slots we use for the Each-
Movie dataset are: movie title, director, cast, genre, plot
summary, plot keywords, user comments, external reviews,
newsgroup reviews, and awards.

System Description
The general overview of our system is shown in Figure 1.
The web crawler uses the URLs provided in the EachMovie
dataset to download movie content from IMDb. After ap-
propriate preprocessing, the downloaded content is stored in
the Movie Content Database. The EachMovie dataset also
provides the user-ratings matrix, which is a matrix of users
versus items, where each cell is the rating given by a user to
an item. We will refer to each row of this matrix as auser-
ratings vector. The user-ratings matrix is very sparse, since
most items have not been rated by most users. The content-
based predictor is trained on each user-ratings vector and a
pseudo user-ratings vector is created. A pseudo user-ratings
vector contains the user’s actual ratings and content-based
predictions for the unrated items. All pseudo user-ratings
vectors put together form the pseudo ratings matrix, which
is a full matrix. Now given an active user’s3 ratings, predic-
tions are made for a new item using CF on the full pseudo
ratings matrix.

The following sections describe our implementation of
the content-based predictor and the pure CF component; fol-
lowed by the details of our hybrid approach.

Pure Content-based Predictor
To provide content-based predictions we treat the prediction
task as a text-categorization problem. We view movie con-
tent information as text documents, and user ratings 0-5 as
one of six class labels. We implemented a bag-of-words
naive Bayesian text classifier (Mitchell 1997) extended to
handle a vector of bags of words; where each bag-of-words
corresponds to a movie-feature (e.g. title, cast, etc.). We use
the classifier to learn a user profile from a set of rated movies
i.e. labeled documents. The learned profile is then used to
predict the label (rating) of unrated movies. A similar ap-
proach to recommending has been used effectively in the
book-recommending system LIBRA (Mooney & Roy 2000).

Pure Collaborative Filtering
We implemented a pure collaborative filtering component
that uses aneighborhood-based algorithm(Herlockeret al.
1999). In neighborhood-based algorithms, a subset of users
are chosen based on their similarity to the active user, and
a weighted combination of their ratings is used to produce

3The active user is the user for whom predictions are being
made.

Matrix

Sparse User

Ratings

Full User

Ratings

Matrix

EachMovie

Active User Ratings

Recommendations

Web Crawler IMDb

Collaborative
Filtering

Movie
Content

Content−based
Predictor

Database

Figure 1: System Overview

predictions for the active user. The algorithm we use can be
summarized in the following steps:

1. Weight all users with respect to similarity with the active
user.
� Similarity between users is measured as the Pearson

correlation between their ratings vectors.

2. Selectn users that have the highest similarity with the
active user.
� These users form theneighborhood.

3. Compute a prediction from a weighted combination of the
selected neighbors’ ratings.

In step1, similarity between two users is computed using
the Pearson correlation coefficient, defined below:

Pa;u =

Pm

i=1 (ra;i � ra)� (ru;i � ru)qPm

i=1 (ra;i � ra)
2
�
Pm

i=1 (ru;i � ru)
2

(1)

wherera;i is the rating given to itemi by usera; ra is the
mean rating given by usera; andm is the total number of
items.

In step3, predictions are computed as the weighted aver-
age of deviations from the neighbor’s mean:

pa;i = ra +

Pn

u=1 (ru;i � ru)� Pa;uPn

u=1 Pa;u
(2)

wherepa;i is the prediction for the active usera for item i;
Pa;u is the similarity between usersa andu; andn is the
number of users in the neighborhood. For our experiments
we used a neighborhood size of 30, based on the recommen-
dation of (Herlockeret al. 1999).

It is common for the active user to have highly correlated
neighbors that are based on very few co-rated (overlapping)



items. These neighbors based on a small number of over-
lapping items tend to be bad predictors. To devalue the cor-
relations based on few co-rated items, we multiply the cor-
relation by aSignificance Weightingfactor (Herlockeret al.
1999). If two users have less than 50 co-rated items we mul-
tiply their correlation by a factorsga;u = n=50, wheren
is the number of co-rated items. If the number of overlap-
ping items is greater than 50, then we leave the correlation
unchanged i.e.sga;u = 1.

Content-Boosted Collaborative Filtering
In content-boosted collaborative filtering, we first create a
pseudo user-ratings vectorfor every useru in the database.
The pseudo user-ratings vector,vu, consists of the item rat-
ings provided by the useru, where available, and those pre-
dicted by the content-based predictor otherwise.

vu;i =

�
ru;i : if useru rated itemi
cu;i : otherwise

In the above equationru;i denotes the actual rating provided
by useru for item i, while cu;i is the rating predicted by the
pure content-based system.

The pseudo user-ratings vectors of all users put together
give the dense pseudo ratings matrixV . We now perform
collaborative filtering using this dense matrix. The similar-
ity between the active usera and another useru is computed
using the Pearson correlation coefficient described in Equa-
tion 1. Instead of the original user votes, we substitute the
votes provided by the pseudo user-ratings vectorsva andvu.

Harmonic Mean Weighting The accuracy of a pseudo
user-ratings vector computed for a user depends on the num-
ber of movies he/she has rated. If the user rated many items,
the content-based predictions are good and hence his pseudo
user-ratings vector is fairly accurate. On the other hand, if
the user rated only a few items, the pseudo user-ratings vec-
tor will not be as accurate. We found that inaccuracies in
pseudo user-ratings vector often yielded misleadingly high
correlations between the active user and other users. Hence
to incorporate confidence (or the lack thereof) in our correla-
tions, we weight them using theHarmonic Mean weighting
factor (HM weighting).

hmi;j =
2mimj

mi +mj

mi =

�
ni
50

: if ni < 50
1 : otherwise

In the above equation,ni refers to the number of items that
useri has rated. The harmonic mean tends to bias the weight
towards the lower of the two values —mi andmj . Thus cor-
relations between pseudo user-ratings with at least 50 user-
rated items each, will receive the highest weight, regardless
of the actual number of movies each user rated. On the other
hand, even if one of the pseudo user-rating vectors is based
on less than 50 user-rated items, the correlation will be de-
valued appropriately.

The choice of the threshold 50 is based on the perfor-
mance of the content-based predictor, which was evaluated

using 10-fold cross-validation (Mitchell 1997). To test per-
formance on varying amounts of training data, a learning
curve was generated by testing the system after training on
increasing subsets of the overall training data. We generated
learning curves for 132 users who had rated more than 200
items. The points on the 132 curves were averaged to give
the final learning curve. From the learning curve we noted
that as the predictor is given more and more training exam-
ples the prediction performance improves, but at around 50
it begins to level off. Beyond this is the point of diminishing
returns; as no matter how large the training set is, prediction
accuracy improves only marginally.

To the HM weight, we add the significance weighting fac-
tor described earlier, and thus obtain thehybrid correlation
weighthwa;u.

hwa;u = hma;u + sga;u (3)
Self Weighting Recall that in CF, a prediction for the
active user is computed as a weighted sum of the mean-
centered votes of the best-n neighbors of that user. In our
approach, we also add the pseudo active user4 to the neigh-
borhood. However, we may want to give the pseudo ac-
tive user more importance than the other neighbors. In other
words, we would like to increase the confidence we place in
the pure-content predictions for the active user. We do this
by incorporating aSelf Weightingfactor in the final predic-
tion:

swa =

�
na
50
�max : if na < 50

max : otherwise (4)

wherena is the number of items rated by the active user.
Again, the choice of the threshold 50 is motivated by the
learning curve mentioned earlier. The parametermax is an
indication of the over-all confidence we have in the content-
based predictor. In our experiments, we used a value of 2 for
max.

Producing Predictions Combining the above two weight-
ing schemes, the final CBCF prediction for the active usera
and itemi is produced as follows:

pa;i = va +

swa(ca;i � va) +
nP

u=1

u6=a

hwa;uPa;u(vu;i � vu)

swa +
nP

u=1

u6=a

hwa;uPa;u

In the above equationca;i corresponds to the pure-content
predictions for the active user and itemi; vu;i is the pseudo
user-rating for a useru and itemi; vu is the mean over all
items for that user;swa, hwa;u andPa;u are as shown in
Equations 4, 3 and 1 respectively; andn is the size of neigh-
borhood. The denominator is a normalization factor that en-
sures all weights sum to one.

Experimental Evaluation
In this section we describe the experimental methodology
and metrics we use to compare different prediction algo-
rithms; and present the results of our experiments.

4Pseudo active user refers to the pseudo user-ratings vector
based on the active user’s ratings.



Methodology
We compare CBCF to a pure content-based predictor, a CF
predictor, and a naive hybrid approach. The naive hybrid
approach takes the average of the ratings generated by the
pure content-based predictor and the pure CF predictor. For
the purposes of comparison, we used a subset of the ratings
data from theEachMovie data set (described earlier). Ten
percent of the users were randomly selected to be the test
users. From each user in the test set, ratings for 25% of items
were withheld. Predictions were computed for the withheld
items using each of the different predictors.

The quality of the various prediction algorithms were
measured by comparing the predicted values for the with-
held ratings to the actual ratings.

Metrics
The metrics for evaluating the accuracy of a prediction al-
gorithm can be divided into two main categories:statistical
accuracy metricsand decision-support metrics(Herlocker
et al. 1999). Statistical accuracy metrics evaluate the accu-
racy of a predictor by comparing predicted values with user-
provided values. To measure statistical accuracy we use the
mean absolute error (MAE) metric — defined as the average
absolute difference between predicted ratings and actual rat-
ings. In our experiments we computed the MAE on the test
set for each user, and then averaged over the set of test users.

Decision-support accuracy measures how well predic-
tions help users selecthigh-quality items. We use Re-
ceiver Operating Characteristic (ROC) sensitivity to mea-
sure decision-support accuracy. A predictor can be treated
as a filter, where predicting a high rating for an item is
equivalent to accepting the item, and predicting a low rating
is equivalent to rejecting the item. The ROC sensitivity is
given by the area under the ROC curve — a curve that plots
sensitivityversus 1-specificityfor a predictor. Sensitivity is
defined as the probability that a good item is accepted by the
filter; and specificity is defined as the probability that a bad
item is rejected by the filter. We consider an itemgoodif the
user gave it a rating of 4 or above, otherwise we consider the
item bad. We refer to this ROC sensitivity with threshold 4
as ROC-4. ROC sensitivity ranges from 0 to 1, where 1 is
ideal and 0.5 is random.

The statistical significance of any differences in perfor-
mance between two predictors was evaluated using two-
tailed pairedt-tests (Mitchell 1997).

Results

Algorithm MAE ROC-4
Pure content-based (CB) predictor1.059 0.6376

Pure CF 1.002 0.6423
Naive Hybrid 1.011 0.6121

Content-boosted CF 0.962 0.6717

Table 1: Summary of Results

The results of our experiments are summarized in Table
1. As can be seen, our CBCF approach performs better than

the other algorithms on both metrics. On the MAE metric,
CBCF performs 9.2% better than pure CB, 4% better than
pure CF and 4.9% better than the naive hybrid. All the dif-
ferences in MAE are statistically significant (p < 0:001).

On the ROC-4, metric CBCF performs 5.4% better than
pure CB, 4.6% better than pure CF and 9.7% better than
the naive hybrid. This implies that our system, compared to
others, does a better of job of recommending high-quality
items, while reducing the probability of recommending bad
items to the user.

Interestingly,Self Weightingdid not make significant im-
provements to our predictions. We believe thatSelf Weight-
ing would play a more important role if the pure CB predic-
tor significantly outperformed CF.

Discussion
In this section we explain how content-boosted collaborative
filtering overcomes some of the shortcomings of pure CF;
and we also discuss some ways of improving CBCF.

Overcoming the First-Rater Problem
In pure CF a prediction cannot be made for an item, for the
active user, unless it was previously rated by other users.
However, we can make such a prediction using a content-
based predictor for the user. Using CBCF we can further
improve the CB predictions by utilizing the content-based
predictions ofotherusers as well. If the neighbors of the ac-
tive user are highly correlated to it, then their CB predictions
should also be very relevant to the user. This is particularly
true if neighbors have rated many more items than the active
user; because their CB predictions are likely to be more ac-
curate than the active user’s. To verify this hypothesis we ran
the following experiments. A set of 500 users were selected
at random from theEachMovie data set. We randomly se-
lected an item to be deleted from the user-ratings matrix. We
then produced pure content-based and CBCF predictions for
the users that had rated the selected item. We repeated this
process for 55 items and averaged the MAE over all users
and items. We found that the MAEs for the pure CB predic-
tor and CBCF were 1.060 and 1.023 respectively; and that
the difference is statistically significant (p < 0:001). So we
can conclude that using collaborative information is benefi-
cial even if no other user has rated the item in question. In
this way, CBCF solves the first-rater problem, and produces
even better predictions than the content-based predictor.

Tackling Sparsity
In CBCF, since we use a pseudo ratings matrix, which is
a full matrix, we eliminate the root of the sparsity problem.
Pseudo user-ratings vectors contain ratings for all items; and
hence all users will be considered as potential neighbors.
This increases the chances of finding similar users. Thus the
sparsity of the user-ratings matrix affects CBCF to a smaller
degree than CF. To verify this hypothesis we ran the fol-
lowing experiments. A set of 1000 users were selected at
random from theEachMovie data set. We treated 500 of
these users as test users, and produced predictions on 25%
of the items they rated. We artificially increased the sparsity



0.97 0.975 0.98 0.985 0.99 0.995 1
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
M

ea
n 

A
bs

ol
ut

e 
E

rr
or

% Sparsity

CF
CBCF
Content

Figure 2: Effect of Sparsity on Prediction Accuracy

of the user-ratings matrix, by randomly dropping elements
from the matrix. We compared the MAE of the different
predictors at varying levels of sparsity. Figure 2 confirms
our hypothesis thatCBCF is more stable than CF with re-
spect to sparsity. In fact, when sparsity exceeds 99%, the
performance of CF drops precipitously, while CBCF is rela-
tively unaffected. In the limit, CBCF will converge to pure
content-based predictions.

Finding Better Neighbors
A crucial step in CF is the selection of a neighborhood. The
neighbors of the active user entirely determine his predic-
tions. It is therefore critical to select neighbors who are
most similar to the active user. In pure CF, the neighbor-
hood comprises of the users that have the bestn correlations
with the active user. The similarity between users is only
determined by the ratings given to co-rated items; so items
that have not been rated by both users are ignored. However,
in CBCF, the similarity is based on the ratings contained in
the pseudo user-ratings vectors; so users do not need to have
a high overlap of co-rated items to be considered similar.
Our claim is that this feature of CBCF, makes it possible
to select a better, more representative neighborhood. For
example, consider two users with identical tastes who have
not rated any items in common. Pure collaborative filtering
would not consider them similar. However, pseudo user-
ratings vectors created using content-based predictions for
the two users would be highly correlated, and therefore they
would be considered neighbors. We believe that this supe-
rior selection of neighbors is one of the reasons thatCBCF
outperforms pure CF.

Improving CBCF
Due to the nature of our hybrid approach, we believe that
improving the performance of the individual components
would almost certainly improve the performance of the
whole system. In other words, if we improved our pure
content-based predictor or the CF algorithm, we would be

able to improve our system’s predictions. A better content-
based predictor would mean that the pseudo ratings matrix
generated would more accurately approximate theactual
full user-ratings matrix. This in turn, would improve the
chances of finding more representative neighbors. And since
the final predictions in our system are based on a CF algo-
rithm, a better CF algorithm can only improve our system’s
performance.

In our current implementation of the content-based pre-
dictor, we use a naive Bayesian text-classifier to learn a six-
way classification task. This approach is probably not ideal,
since it disregards the fact that classes represent ratings on a
linear scale. This problem can be overcome by using a learn-
ing algorithm that can directly produce numerical predic-
tions. For example, logistic regression and locally weighted
regression (Duda, Hart, & Stork 2000) could be used to di-
rectly predict ratings from item content. We should be able
to improve our content-based predictions using one of these
approaches. In addition, the CF component in our system
may be improved by using aClustered Pearson Predictor
(CPP) (Fisheret al. 2000). The CPP algorithm creates clus-
ters of users based onk-means clustering. Collaborative pre-
dictions are made by only using the cluster centroids as po-
tential neighbors. Fisher et al. claim that this approach is
more accurate than the pure CF algorithm, with the added
advantage of being more scalable.

Related Work
There have been a few other attempts to combine content in-
formation with collaborative filtering. One simple approach
is to allow both content-based and collaborative filtering
methods to produce separate recommendations, and then to
directly combine their predictions (Cotter & Smyth 2000;
Claypool, Gokhale, & Miranda 1999). In another approach
(Soboroff & Nicholas 1999), theterm-document matrixis
multiplied with the user-ratings matrix to produce acontent-
profile matrix. Using Latent Semantic Indexing, a rank-
k approximation of the content-profile matrix is computed.
Term vectors of the user’s relevant documents are averaged
to produce a user’s profile. Now, new documents are ranked
against each user’s profile in the LSI space. In Pazzani’s ap-
proach (1999), each user-profile is represented by a vector
of weighted words derived from positive training examples
using the Winnow algorithm. Predictions are made by ap-
plying CF directly to the matrix of user-profiles (as opposed
to the user-ratings matrix). An alternate approach, Fab (Bal-
abanovic & Shoham 1997), uses relevance feedback to si-
multaneously mold a personal filter along with a communal
“topic” filter. Documents are initially ranked by the topic
filter and then sent to a user’s personal filter. The user’s rel-
evance feedback is used to modify both the personal filter
and the originating topic filter. In another approach, Basu
et al. (1998) treat recommending as a classification task.
They useRipper, a rule induction system, to learn a function
that takes a user and movie and predicts whether the movie
will be liked or disliked. They combine collaborative and
content information, by creating features such ascomedies
liked by userandusers who liked movies of genre X. Good
et al. (1999) use collaborative filtering along with a number



of personalized information filtering agents. Predictions for
a user are made by applying CF on the set of other users
and the active user’s personalized agents. Our method dif-
fers from this by also using CF on the personalized agents of
the other users. In recent work, Lee (2001) treats the recom-
mending task as the learning of a user’s preference function
that exploits item content as well as the ratings of similar
users. They perform a study of several mixture models for
this task. Popescul et al. (2001) extended Hofmann’s aspect
model to incorporate three-way co-occurrence data among
users, items, and item content. They propose a method of
dealing with sparsity that is similar to ours. They estimate
the probability of a user accessing a document, that he has
not seen before, by the average cosine similarity of the docu-
ment to all the documents the user has seen. Our task differs
from their’s since we provide numerical ratings instead of
just rankings. Also their approach is tied to the EM frame-
work; whereas our approach is more modular and general,
and as such it is independent of the choice of collaborative
and content-based components.

Conclusions and Future Work
Incorporating content information into collaborative filter-
ing can significantly improve predictions of a recommender
system. In this paper, we have provided an effective way
of achieving this. We have shown how Content-boosted
Collaborative Filtering performs better than a pure content-
based predictor, collaborative filtering, and a naive hybrid of
the two.

CBCF elegantly exploits content within a collaborative
framework. It overcomes the disadvantages of both collabo-
rative filtering and content-based methods, by bolstering CF
with content and vice versa. Further, due to the modular na-
ture of our framework, any improvements in collaborative
filtering or content-based recommending can be easily ex-
ploited to build a more powerful system.

Although CBCF performs consistently better than pure
CF, the difference in performance is not very large (4%).
The performance of our system can be boosted by using the
methods described earlier. Experiments comparing the dif-
ferent approaches of combining content and collaboration,
outlined in the previous section, are also needed.

Acknowledgments
We would like to thank Vishal Mishra for his web crawler
and many useful discussions. We also thank Joydeep Ghosh
and Inderjit Dhillon for their valuable advice during the
course of this work. This research was supported by the
National Science Foundation under grants IRI-9704943 and
IIS-0117308.

References
Balabanovic, M., and Shoham, Y. 1997. Fab: Content-
based, collaborative recommendation.Communications of
the Association of Computing Machinery40(3):66–72.
Basu, C.; Hirsh, H.; and Cohen, W. 1998. Recommenda-
tion as classification: Using social and content-based infor-
mation in recommendation. InProceedings of the Fifteenth

National Conference on Artificial Intelligence (AAAI-98),
714–720.
Claypool, M.; Gokhale, A.; and Miranda, T. 1999. Com-
bining content-based and collaborative filters in an online
newspaper. InProceedings of the SIGIR-99 Workshop on
Recommender Systems: Algorithms and Evaluation.
Cotter, P., and Smyth, B. 2000. PTV: Intelligent personal-
ized TV guides. InTwelfth Conference on Innovative Ap-
plications of Artificial Intelligence, 957–964.
Duda, R. O.; Hart, P. E.; and Stork, D. G. 2000.Pattern
Classification. New York: Wiley.
Fisher, D.; Hildrum, K.; Hong, J.; Newman, M.; Thomas,
M.; and Vuduc, R. 2000. Swami: A framework for collab-
orative filtering algorithm development and evaluation. In
SIGIR 2000. Short paper.
Goldberg, D.; Nichols, D.; Oki, B.; and Terry, D. 1992. Us-
ing collaborative filtering to weave an information tapestry.
Communications of the Association of Computing Machin-
ery 35(12):61–70.
Good, N.; Schafer, J. B.; Konstan, J. A.; Borchers, A.; Sar-
war, B.; Herlocker, J.; and Riedl, J. 1999. Combining
collaborative filtering with personal agents for better rec-
ommendations. InProceedings of the Sixteenth National
Conference on Artificial Intelligence (AAAI-99), 439–446.
Herlocker, J.; Konstan, J.; Borchers, A.; and Riedl, J. 1999.
An algorithmic framework for performing collaborative fil-
tering. InSIGIR ’99: Proceedings of the 22nd Annual In-
ternational ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, 230–237.
Lee, W. S. 2001. Collaborative learning for recommender
systems. InProceedings of the Eighteenth International
Conference on Machine Learning (ICML-2001), 314–321.
Mitchell, T. 1997. Machine Learning. New York, NY:
McGraw-Hill.
Mooney, R. J., and Roy, L. 2000. Content-based book rec-
ommending using learning for text categorization. InPro-
ceedings of the Fifth ACM Conference on Digital Libraries,
195–204.
Pazzani, M. J. 1999. A framework for collaborative,
content-based and demographic filtering.Artificial Intel-
ligence Review13(5-6):393–408.
Popescul, A.; Ungar, L.; Pennock, D. M.; and Lawrence,
S. 2001. Probabilistic models for unified collaborative
and content-based recommendation in sparse-data environ-
ments. InProceedings of the Seventeenth Conference on
Uncertainity in Artificial Intelligence.
Resnick, P.; Iacovou, N.; Sushak, M.; Bergstrom, P.; and
Reidl, J. 1994. GroupLens: An open architecture for col-
laborative filtering of netnews. InProceedings of the 1994
Computer Supported Cooperative Work Conference. New
York: ACM.
Soboroff, I., and Nicholas, C. 1999. Combining content
and collaboration in text filtering. In Joachims, T., ed.,Pro-
ceedings of the IJCAI’99 Workshop on Machine Learning
in Information Filtering, 86–91.


