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Abstract
At NASA’s Goddard Space Flight Center (GSFC), we have
been developing the means to create space and surface
systems that are active participants in their environment
rather than being merely visitors that withstand space’s
hazards as our extended remotely controlled tools.  Central
to this work has been the development of the Autonomous
Nano-Technology Swarm (ANTS) mission architecture and
the Neural Basis Function/Synthetic Neural System
(NBF/SNS) which are included among the subjects of
several GSFC provisional patent applications.  These are
scalable systems with non-linear dynamics built in to deal
with irregularity, uncertainty, and unpredictability in their
environments.  NBFs are a synthesis of low- and high-level
approaches to system control in which specialized
components are embedded in an Evolvable Neural Interface
(ENI) that mediates information flow through the system.
Individual system behaviors are driven by individual NBFs,
and more complex behaviors are composed by linking
multiple NBFs through the ENI.  Conflict resolution and
ontological mapping between NBF components occurs
primarily within the ENI which is genetically evolved and
trained to perform these resolutions and mappings.  This
built-in flexibility is especially important for space systems
which currently operate only within very narrow margins of
safety.  The first NBF is being developed to demonstrate that
independent reactive low-level attitude and propulsion
control and a heuristic high-level navigation executive can

ground themselves and achieve mission goals in the context
of a Hubble Space Telescope (HST) recovery scenario.

Synthesizing the autonomic and the heuristic
We are taking a developmental approach to the problem of
developing an extensible, evolvable, and trainable control
system that can scale to advanced systems.  Individual
specialized components are developed in simulation in
which they are evolved to fit the mission context and
trained to show mission-appropriate behaviors.
Adaptability is built in from the beginning and provides a
means for the control system to adapt to off-nominal
performance, system degradation, and module replacements
that happen during space system operations.  This built-in
adaptability also allows control components called Neural
Basis Functions to be added to enrich system behavior
(Curtis et al. 2000).  Such capabilities would greatly
enhance space system survivability and greatly ameliorate
integration and test problems.  The approach we are taking
would also help us address a key problem facing space
system control, namely the explosion of detailed
specification required to handle the future’s complicated
systems.  Our approach represents a dramatic departure
from current standard practice that requires precise and
rigid control over every degree of freedom available to the



space mission architect, and the minimization of
uncontrollable variables.  Such a design philosophy is not
appropriate for developing robust and reliable systems for
the irregular and dynamic environments that are our next
destinations in space.

The space systems required to meet the challenges being
posed by our goals for space exploration are growing more
sophisticated and complex.  With current approaches to
space system implementation, the margin for error or
deviation from nominal mission plans is extremely small.
This fact drives up costs and drives down our tolerance for
risk, irregularity, and spontaneity. At Goddard Space Flight
Center, by considering advanced mission concepts such as
the Autonomous Nano-Technology Swarm Prospecting
Asteroids Mission (ANTS/PAM) and then looking at
today’s capabilities, we have outlined pathways from near-
term to far-term capabilities (Curtis et al. 2000; Curtis et al.
2004).

In this work, we describe our initial efforts to develop an
approach for implementing richer and more complicated
space systems than are currently possible.  Spacecraft
operations is a critical component of mission architecture
and is a key limiting factor, particularly for systems with
large numbers of components, multiple spacecraft, or that
are intimately coupled with their environment like planetary
rovers or asteroid surveyors.

Autonomic Systems
In biological systems, a great deal of control is performed at
an autonomic level.  These are functions and behaviors that
are handled outside of conscious control.  These are
functions such as breathing, heartbeat regulation, and
balance:  i.e. the essential control functions that govern the
homeostatic balance of life.  In many ways, biological
autonomic control functions solve very difficult problems
balancing many competing environmental and system
parameters. These solutions may not be optimal, but they
have been successful and adaptable enough to bring about
the diversity of life we see today.

The autonomic systems that we have been developing are
based on nonlinear oscillators acting as simple nervous
systems called nervous nets first developed by Mark Tilden
(Rilee et al. 2004). In these systems actuators and sensors
are tightly coupled with the nervous net.  The nonlinear
oscillations of the nervous net provide control signals to the
actuators that provide desired low-level behaviors such as
balance or walking.  This control strategy can be very
robust, even if the system takes on unexpected states,
because the nonlinear dynamics of the nervous system can
automatically and chaotically search its state space for
desirable states or limit cycles.  Thus we are constructing
systems whose built-in dynamics maintain a particular kind
of balance or motion.  For these systems, whatever logical
calculus is applied to a given situation is “hardwired” into
the system itself.

Though biological autonomic systems seem to feature a
low-level synthesis of control, sensing, and actuation, we
are not limited to this approach.  As computer performance

has increased, the capability, complexity, and sophistication
of control software has increased.  The telecommunications
industry, among others, has driven technologies that have
improved reliability and robustness with implementations
of multi-module redundancy and replacement capabilities.
Remote and distributed software maintenance is
commonplace today.  Some spacecraft instrumentation
today features a “plug-and-play” autonomy for important,
but narrow functions.  With these advances, one can use
what essentially amount to algorithmic or heuristic
approaches to system automation and control and mimic
what biological autonomic systems do as part of their
fundamental nature.

Heuristic Systems
By heuristic systems we mean those that use ratiocination
as a means to control their behavior.  Symbolic reasoning
using various forms of logical inference is the foundation of
these approaches.  Expert systems are the typical examples
of heuristic systems and may draw on a wide variety of
algorithms, e.g. neural net or fuzzy logic. For environments
and systems that have logical patterns in the problems that
arise during missions, heuristic systems can perform quite
well.

There are two costs for the use the array of the tools of
reason or deliberation: (1) some reference must be made
between the symbols used by the reasoning system and the
reality being reasoned about, and (2) reasoning works best
with simple systems and does not scale well to highly
complex or irregular systems.  In an engineered system, a
model in a symbolic reasoning system can be made to
reflect with great precision the reality of that system.
However, uncertainties and lack of knowledge can cause
model and reality to differ, and reconciling and eliminating
these differences is a long standing problem in model-based
robotic control.  If these differences are not recognized and
reconciled, the system may perform inappropriate actions
with catastrophic consequences.

Synthesis via the Evolvable Neural Interface
Thus we have two ways a robot might determine what
happens next.  In psychological terms, on one hand there is
an intuitive (low-level) approach in which responses are
essentially hardwired into the control systems themselves.
On the other hand there is a deliberative (high-level, or
heuristic) approach in which responses are reasoned about
and in which there is typically some sort of symbolic
representation of elements of a robot’s environment.
Separately, these two approaches are not each capable of
providing the kinds of behaviors we see in relatively simple
creatures.

As biological systems we are faced with this duality, yet
both low- and high-level aspects work together.  For
example, we may reason about the perceived characteristics
of a group of hills in the context of our science goals and
decide which hill to ascend, but we don’t similarly reason
about which group of muscles to excite to start the climb.



In fact, in large part, we cannot pick and choose which
muscles to use.  The anatomy and function of our brain
seems to translate our more symbolic thoughts and goals
into a complicated series of signals distributed through our
nervous system that drive our own varied behaviors.  As we
develop and learn, raw functions—muscle excitation,
s igh t—are  o rches t ra ted  in to  h igher - l eve l
behaviors—walking, reading—that help us achieve our own
goals.  We have a built-in adaptability that allows our own
control systems to adapt to the diversity of body forms and
cultures in which we find ourselves.

Therefore, in contrast to many traditional approaches to
Artificial Intelligence and the control of robots, we have
proposed an architecture that features three elements: (1)
low-level components, tightly coupled between robot and
environment, (2) high-level components that focus on
heuristics and abstractions (like mission goals), and (3) an
Evolvable Neural Interface that mediates communications
between these independent elements.  Previously
researchers have focused on the first two considered
independently. At present, researchers are starting to
consider syntheses of these two.  Our approach recognizes
that these two approaches are qualitatively different and
each scales very poorly to the domain of the other:
translating between these two domains is a demanding task.
The ENI architecture provides an active communications
medium between the low- and high-level components.  It is
evolvable because it adapts how it communicates signals
both during a developmental phase and during operations.
It is neural in the sense that the ENI has a multiply
connected three-dimensional network topology of neuron-
like nodes that communicate and possibly modify the
signals that pass through them.  As an interface, the ENI
stands between the low- and high-level functional
components.  These three elements together, low-, high-

level, and the ENI form an architectural function called a
Neural Basis Function (NBF; Figure 1.).

Neural Basis Function Operational Characteristics
The NBF is a new architectural concept for robotic control.
Most visible actions of the robot are the immediate result of
low-level functions driving and protecting the hardware and
reacting to input from the ENI and the systems
environment.  The higher-level functions reason about input
they receive from the ENI and send commands back out
through the ENI.  Both low- and high-level components put
information onto the ENI.  The result of these interacting
systems is purposeful behavior—purposeful in that the
high-level components seek to drive the system towards
meeting mission goals.  In general, the low-level
components simply do not operate on that abstract level.
The ENI translates the relatively abstract symbols of the
high-level into relatively simple numbers and commands
that the low-level understands.

As described above, the ENI is a learning system.  In the
developmental phase, synthetic environments are created in
which an NBF and its robot are rewarded for performing
simple tasks.  This reward acts as feedback to the degrees-
of-freedom within the ENI.  In this way, the symbolic
constructs within the higher-level functions are mapped to
lower-level behaviors.  Variations in the environment or the
robotic system or even in the detailed structure of the NBF
can be used to expand the practice of the NBF/robot
system.  System degradation, fault, and failure of system
components can be simulated and accounted for during the
development of the system.  Furthermore, transition from
simulated systems to real systems involves the same
procedure of adaptation.  An iterative process is envisioned
whereby computer simulation and deployment to hardware
in real environments advances the capabilities and fidelity
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of both.  However, the critical enabler in this is the built-in
adaptability of the components of the NBF.

Because of its structure and adaptability, behaviors may
be composed.  This is the source of the term basis function
in the name of the architecture.  In analogy to basis
functions of mathematical physics, behaviors implemented
as NBF may be composed to construct other behaviors. The
extension of software systems has been a central research
problem of computer science since its inception.  With
NBFs the goal is to link low- and high-level components or
complete NBFs to a pervasive ENI and then have the ENI
and system adapt to the new components and tasks.  For
example, a robotic arm system may be implemented to
grasp a rock, lower-level components would provide motor
control, proximity sensing, and the like, while a higher-
level component would perform path planning and rock
selection, and the ENI would communicate signals between
these components.  To add the behavior of dropping or
throwing a rock, many of the same components would be
used, but their coordination by the ENI would have to be
different.  This difference could be driven by a higher-level
expert rock-throwing system attached to the ENI along with
a fast acting low-level signal driver to control the timing of
the actuators.  In essence, these two items would make up a
“rock throwing” NBF to be added to the “rock grasping”
NBF.  Whether the robotic arm grasps or throws a rock is a
higher-level decision to be made according to mission goals
and communicated through the ENI that then enables or
inhibits the appropriate behavior.  During training, the ENI
and other components of the NBF adapt their internal
degrees of freedom to account for the specific robotic
system and environment in which they are embedded.

Scalability, self-similarity, parallelism
The NBF architecture was designed to be scalable so that it
could be used at multiple levels.  Subsystems could feature
their own set of NBFs controlling their own behaviors
while providing an interface to other subsystems through
the ENI.  For a multi-level, multi-spacecraft mission like
ANTS/PAM, the ENI exists throughout the entire swarm of
spacecraft. Spacecraft with their individual subsystems all
operate in parallel providing either greater capacity for
performance or redundancy for reliability. NBFs at
subsystem or even spacecraft levels can be seen as
providing low-level autonomic functionality for the teams
and swarms of spacecraft.   A system that has this kind of
scale-invariant symmetry, i.e. it looks the same at different
levels of the system, is called self-similar. Through pre-
mission training and adaptation during the mission itself,
the internal degrees-of-freedom of the ENI adapt to better
meet mission goals.  Such an approach to system
integration and test is a great departure from what has
worked in the past for our relatively simple systems.  A
Synthetic Neural System based on NBFs limits the
complexity visible by any particular controller and provides
a single scale-invariant paradigm to help drive system
organization and control.

Hubble Space Telescope Recovery:
Uncontrolled Tumbling

An important example of an environment in which
uncertainty and irregularity are problems is the case of
rendezvous and capture of an uncooperative target.  We
have been looking into a problem motivated by HST
recovery concepts.  Spacecraft without attitude control and
with internal degrees of freedom can shift momentum
between those various degrees of freedom resulting in the
spacecraft tumbling through space. External forcing such as
drag and radiation pressure also affect the dynamics of the
spacecraft.  The predictability of this tumble depends on
many factors, but in a worst case scenario the tumbling may
be chaotic meaning that, like the weather, beyond some
period of time, the attitude of the spacecraft becomes
unpredictable. The problems posed by such a mode are that
the system state is unpredictable and its dynamics
complicated over time.

To explore NBF-based SNS architectures in this
situation, we have developed a simulation wherein a
chaotically tumbling target (HST) is approached and
captured by a recovery vehicle (RV; Figure 2).  The HST
has six degrees of freedom associated with translational
motion and attitude. Unlike the real HST, our model has
four internal degrees of freedom that are coupled to the
attitude’s rotational velocity.  The particular internal model
we are using is not representative of the internal structure of
the HST, but it provides a good general test case that
features complicated behavior. Nothing fundamentally
precludes using a higher fidelity model.  Small dissipative
forces couple the degrees of freedom and remove kinetic
energy from the system while maintaining total system
momenta.  External driving stands in for drag and radiation
pressure effects and adds energy and momentum to the
system.  There is a flow of energy between the external
driving and the internal dissipation that shows up as
complex dynamics of the HST model.  In more advanced
models, impulsive inputs such as from collisions with the
RV or meteor and debris strikes could be included.  The
couplings and models are parameterized so that the nature
of the dynamics can be controlled.  These parameters,
including initial positions and velocities, can be varied to
exercise the NBF control software under a broad range of
conditions.  This variation can be automated and
randomized to provide a wide range of learning and test
opportunities and to start to provide a quantitative
understanding of NBF and system characteristics.  For most
of our tests, we work with extreme cases in which HST
behaviors are difficult to predict because these are stronger
tests of our system architecture.

The RV is represented by a six degree of freedom,
translation and attitude, along with an internal system of
rotation wheels for attitude control.  Currently, relative
position and attitude information is provided, by fiat, to a
low-level control system that governs the RV’s translation
and attitude.  A network of synthetic neurons based on
Tilden’s work with nonlinear oscillators provides this low-



level control.  This network is designed to accept input
from an ENI that communicates information from sensors
and higher-level heuristic controllers. Currently, the ENI is
a more traditional artificial neural net, but one that is
trained using an Extended Kalman Filter to more efficiently
navigate its training space (Lary et al. 2004a; Lary et al.
2004b).
 The RV and the HST target are implemented as objects
in the Java programming language and are built using the
Java Astrodynamics Toolkit (JAT 2005).  JAT is also being
used for GSFC’s Formation Flying Testbed, which is a
high-TRL test facility for conducting flight control
experiments.  Therefore there exists a rapid pathway to
advance our NBF architectural concepts.  We have ported
JAT and supporting software to GSFC’s Beowulf cluster
supercomputers so that (1) we may run many test and
training cases in parallel, and (2) we may test NBF

components such as higher-level heuristics or lower-level
signal processing that can take advantage of multi-
processor parallelism.  The latter of these two ties into our
work with high performance computing and the Space
Technology 8 flight project in which high performance,
high reliability Beowulf-style cluster computer technology
to be deployed onboard a spacecraft (Cheung et al. 2004).
Once the basic structure of the NBF has been implemented,
we plan to genetically adapt the system to a broad range of
HST recovery scenarios.

In addition to the basic structure we plan to examine the
composability of NBFs by adding lower- and higher-level
control components that will then be put through the
training and evolution regime mentioned above.  These
include a three-dimensional LIDAR/structured-light-based
vision system for low-level ranging and attitude
determination (e.g. Le Moigne and Waxman, 1988) and a

Figure 2. Simulation snapshots showing a Recovery Vehicle (RV) responding to a high-level command to change
its attitude relative to a tumbling target.  In these sequences, the RV attitude is controlled by a low-level six-neuron
nervous net operating four reaction wheels:  no particular optimization or other controls were applied.  Graphs are
of the spacecraft attitudes in quaternions.



higher-level prediction and navigation component that uses
a neural net and physics-based heuristics to plan and
execute a recovery trajectory.

Conclusion
Preliminary training of an ENI has shown that high-level
commands along with relevant sensor information about the
RV and the HST target can be translated into low-level
actuator input that suffices to control the attitude of the RV.
Preliminary work has also shown that the neural net of the
ENI can also be used to predict the behavior of the system,
in this case, the HST target, which means that it can provide
real-time feedback that the low-level system can use to
adjust its behavior.  This is an important capability, because
we are seeing the beginnings of a robust and
computationally efficient autonomous system that can catch
a chaotically tumbling target.  The NBF would be a
software package trained and developed on the ground and
uploaded to a conventionally developed system.
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