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Abstract

In this paper, a recurrent spiking neural networks is
trained on an robot to learn to avoid obstacles using
visual flow. At the starting of the process, this net-
work is initialized in a ”chaotic” state and a STDP-like
learning algorithm is used. We argue that a proper
scaling variable can direct the network from chaos to
synchronized state and back. This process allows us
to train the robot because it links (external) tempo-
ral loops with (internal) neural activity. We use the
scaling factor to have this coupling functional. Given
an over-simplistic scaling, we managed to obtain very
interesting resulting behaviors when tested on a real
robot.

Introduction
The problem of adaptation of robots in an environment
is a challenging issue. The obvious problem is the bal-
ance between real adaptation and memory. In other
words, an adaptive device must be both plastic (in or-
der to learn new things) and rigid (not to forget them).

Moreover, a behavior is a spatio-temporally struc-
tured relationship between an robot and its environ-
ment. Thus it is a temporal process where past has a
consequence on the future. A good adaptation mecha-
nism should also allow a temporal retrieval of sequence
of elementary behaviors in an efficient way. As a con-
sequence, adaptation must be viewed as a result from
coupling the dynamics of input/output time series with
dynamics inside an artificial brain on a codependent
way.

However, even from that point of view, the problem
still needs to be solved so far. Many architectures pro-
posed dynamical process for temporal series learning.
Most of the time, the learning procedures are off-line
and supervised. An alternative was found in genetic al-
gorithm (Soula, Beslon, & Favrel 2003; di Paolo 2003;
Floreano & Mattiusi 2001). Unfortunately, all these ap-
proaches still lack of on-line adaption methods and offer
no obvious path for enabling them.

Still, some approaches stands on the ground of dy-
namical systems in a way to make an original use of
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their properties. Indeed, seen beforehand as a problem
to avoid, the chaotic nature of certain architecture ap-
pears as a new paradigm for learning. In these models
memory is not seen anymore as a fixed point to where
the process should converge.

These facts will be our starting point. At the start,
the controller must exhibit enough intrinsic features to
encompass wide range of dynamics – a chaotic state.
Adaptation will therefore be a plasticity mechanism
that allows us to put constraints on “good” dynamics.
On the other hand, it must also have the power to “go
back” into a general disordered state (Langton 1991).

Throughout this paper, we will argue that recurrent
spiking neuron networks have the required properties.
The mechanism of plasticity is inspired from biology :
the Spike-Timing Dependent Plasticity. We show the
effect of such rules on the overall behavior of a recurrent
spiking neural network.

Finally, we propose a method using the STDP-rule
for learning behaviors. Indeed, using an over-simplistic
scaling, we show the results of our experiments to train
a real robot to avoid obstacles using its visual flow.

The model

Temporal Coding
The biological brain rests on a network of neurons which
communicate by sending pulses one with each other via
their axons. Theses pulses (also known as spikes) are
small current charges emitted when the membrane po-
tential of the neuron crosses a threshold. The mem-
brane potential is then reset and begins to grow again
according to the input spikes coming from other neu-
rons. Moreover, for a short period after spiking - called
refractory period, the neuron can no longer spike no
matter how strong is the input stimulation.

Supported by many neurobiological observation (e.g
(Adrian 1926)), major contributions to artificial neural
networks came from the frequency-based models of such
neurons. However, contemporary neurobiology suggests
that a smaller temporal scale (enabling to use the ex-
act timing of a spike) is of major importance to un-
derstand neural treatment. Indeed, determination of
temporal and spatial correlations in neural activity has



become one of the most important tools in neurophysio-
logical brain research. During the last decade, temporal
synchronizations between far-off neurons have been de-
tected in most of the cerebral areas (Gray et al. 1989;
Singer 1993; Varela et al. 2001) as well as strongly
stimulus dependent correlations(Gray 1999).

On another point of view, the process time would
be too long if at each step neurons should wait and
integrate for a long time in order to convey a firing
rate. The example of vision recognition is particularly
striking (Thorpe, Fize, & Marlot 1996). For example,
(Hopfield 1995; Samuelides, Thorpe, & Veneau 1997)
have shown that the exact firing date of a neuron can
precisely code the nature of stimulus received by this
neuron. It is then useless to wait for more spikes to
transmit the neural information to the remaining of the
net (Maas & Bishop 2001; Gerstner & Kistler 2002).

Finally, from a theoretical point of view, many au-
thors stress that the spike dynamics of a network of neu-
rons is of central importance to elucidate components
of the neural code in cortex - to understand the mech-
anisms of cross-correlations (Meyer & van Vreeswijk
2002) and the temporally irregular firing in the cortex
(van Vreeswijk & Sompolinsky 1996).

Spiking neurons
In this section, we present the model of discrete leaky
integrate and fire neuron (Lapicque 1907; Tuckwell
1988; Domany, Hemmen, & Schulten 1994) and the no-
tations that will be used throughout the remaining of
the paper.

In this model, the neuron state is defined by one state
variable : the membrane potential V . The dynamics of
the neuron is defined by the following discrete equation :

Vi(t) = γ(Vi(t−1)−Vrest)+
N∑

j=0

Wijδ(t−Tj−dij)+Ii(t)

where i and j are indexes of neurons (all the neurons j
are inputs of i – N pre-synaptic neurons in all). γ is a
decay rate γ ∈ [0, 1]. Vrest is the potential of rest (and
reset). Ii(t) is an external input current for neuron i.
Wij are the synaptic strengths (the weights). Tj is the
last time neuron j fired, dij is an axonal delay between
j and i. Finally δ is the Kronecker function.

When Vi crosses the threshold θ(t), the neuron fires
and is reset to its resting potential. We can express this
transition:

lim
∆t→0+

Vi(Ti −∆t) = θ(t)

lim
∆t→0+

Vi(Ti + ∆t) = Vrest

θ(t) is a normal random variable with mean θ̄ and vari-
ance σ2

noise. A random threshold introduces noise in
the spiking dates and consequently in all the network.

Setting T 0
i = −∞ we define Tn

i (the n-th spiking
date) recursively as this:

Tn
i = inf(t | t > Tn−1

i + ri, Vi(t) ≥ θ(t))

where ri is the refractory period for the neuron i.
Leaky integrate and fire neurons are known to be

good approximates of biological neurons concerning
spiking dates distribution. Moreover, they are simple
enough and easy to handle when embedded in a robot.
For the all the experiments, Vrest = 0.0, θ̄ = 1.0, ri = 4
for all i and γ = 0.99.

Dynamics of spiking-neurons nets
As a general approach, some authors (Daucé 2000;
Daucé & Quoy 2000; Maas, Natschlager, & Markram
2002) used the dynamical properties and chaotic fea-
tures of recurrent networks of classical sigmoid neurons
as a tool for learning and pattern storing. In the spiking
neurons case, it is still to be done.

At a first glance, spiking neural networks show a very
broad variety of dynamics (Golomb 1994; van Vreeswijk
& Sompolinsky 1996; Meyer & van Vreeswijk 2002). In
simple case enough it was determined. Sufficient con-
dition for phase synchronization and its stability was
proposed in homogeneous networks (Chow 1998; Ger-
stner 2001). Chaotic properties (expressed as Lyapunov
exponents) was discovered for particular symmetric net-
works (Coombes 1999). In the precise case of integrate
and fire neurons, equilibrium criteria has been calcu-
lated for nets of irregular firing neurons (Brunel 2000;
Amit & Brunel 1997b; 1997a) and VLSI neurons (Fusi
& Mattia 1999; Mattia & Giudice 2000).

In a behavioral perspective (i.e. the spiking neuron
network will be in charge of a dynamic sensori-motor
task), it becomes vital to examine the controller internal
properties regarding its connectivity. More precisely,
the network will have to exhibit two contradictory dy-
namic features. On one hand, It must be reactive – in-
put stimuli should modify the dynamics. On the other
hand, when available information in a noisy environ-
ment consists on coherent flow of inputs, it must have
its own internal dynamics to be able to maintain a sta-
ble behavior.

Any internal dynamics emerge from the collective be-
havior of interacting neurons. This is a product of the
coupling between neurons. So to start the study, we be-
gin by examine the influence of a coupling factor – the
intensity of the average influence of one neuron upon
one another.

Assume we have a stochastic totally recurrent spiking
neural nets. Suppose the weight distribution follows a
centered normal law. The coupling factor here is the
variance of the law σ2

w. In order to check the effect of
the variance we introduce the average potential of the
network :

m(t) =
1
N

N∑
i=1

Vi(t)

Figures 1 and 2 show the temporal evolution of the
average potential when the network receives a unique
stimulation at the start of the process (so-called spon-
taneous mode). In order for the regime to be self-
sustaining (i.e. no neural death) the coupling factor



must be high enough. When it is so, the dynamics
evolves from a chaotic mode (in figure 1) to a syn-
chronous mode (in figure 2).

Figure 1: Chaotic mode. Parameters : N = 100, r = 4
and σw = 0.18

The chaotic mode expresses that the interactions be-
tween neurons are too weak to stick to some predeter-
mined pattern. However, with high coupling the dy-
namics is “locked” in a very stable state.

At the neuron level, in the chaotic mode, neurons
fire asynchronously and aperiodically. Increasing value
of variance leads to an increase of periodicity among
neurons as well as synchrony.

When used as a controller, the internal mode im-
poses different behavior to an agent. A network in
chaotic coupling gives a agent with input-led and al-
most random behavior. This is a particularly interest-
ing feature for exploration problem. On the other hand,
synchronous mode gives a stereo-typical (“autistic”) be-
havior for the agent.In this case, the internal dynamics
dominates the flow of input (leading to exploitation).

Obviously, these two important behaviors must be
combined. Thus the “promised land” must be some-
where in between –“at the edge of chaos”. Starting
from a chaotic state, a recurrent network while learning
should be able to evolve toward both types of function-
ing. It should evolve toward more synchrony to manage
a coupling between the environment and the agent and
“back” to chaos to test acquire new (and possibly bet-
ter) behaviors.

Learning at the Edge of Chaos

Recent neurobiology experiments have suggested that
the relative timing of pre- and post-synaptic potentials
played an important role in determining the intensity
as well as the sign of variation of a synapse strength

Figure 2: Synchronous mode. Parameters : N =
100, r = 4 and σw = 0.30

(Markram et al. 1997; Bi & Poo 1998; Abbott & Nelson
2000). The intensity of this Long Term Potentiation
(and Depression) is directly dependent of the relative
timing – the spike delay between the post-synaptic and
pre-synaptic neurons. In addition, if this delay is high
enough (order of tens of milliseconds) no modification
occurs. On the other hand, the modification is maximal
when the post-synaptic neuron fires just after (or just
before) the pre-synaptic does.

As (Bi & Poo 1998) put it, one can extract quite
straightforwardly a very simple rule that rests upon
inter-spikes delays. This “rule” is known as Spike-Time
Dependent Plasticity (STDP). It became a widespread
implementation of Hebb’s initial intuition on memory
formation in the brain (Hebb 1949).

STDP rule involves weight modification as this :

∆Wij = α(1− |Wij |)hd(∆ij)

where ∆ij is the difference between the last firing dates
of post-synaptic neuron i and pre-synaptic j. hd(t) is
a function which depends on the axonal delay between
j and i. α is a scaling parameter. We chose the sim-
plest possible shape for hd : piecewise linear and anti-
symmetric defined as :

hd(t) =


T−t
T−d d < t < T

t
d 0 < t < d
0 t > T

−hd(−t) t < 0

Here T is the time-out constant (i.e the relative timing
above which no modification occurs).

The STDP rule was chosen because it implies syn-
chronization between neurons. At the start, we get
a network in a chaotic spontaneous state. Then, the



STDP rules is applied with a positive scaling factor.
The temporal evolution of the average potential is
showed in figure 3. During the process, the charac-
teristic cloud of chaos begins to leave room for no-less
characteristic stripes of the synchronous mode. When
inverting the sign (anti-STDP), the network is moving
back from synchronous mode toward chaotic dynamics
(from stripes to cloud).

Figure 3: Influence of STDP algorithm on the coupling.
It shows the evolution of the Mean Potential over the
time. During the first 100000 ms, the scaling factor α
is > 0 and is < 0 for the remaining time. We start with
a chaotic network. Parameters: N = 100, σ = 0.2, r =
4, T = 50, |α| = 0.05.

As such the STDP/anti-STDP algorithm will be our
learning framework. Starting with a random network in
a chaotic mode, an agent will freely explore. The sign of
the scaling factor will be adjusted in order to synchro-
nize/desynchronize when needed allowing the network
to “learn at the edge of chaos”.

Experiments and results
We tested our approach on a task of obstacle avoid-
ance with visual flow. The robot has to avoid walls
and obstacles using only its camera information. More
precisely, there will be neither proximity sensors nor
positioning device available to it. In addition, the envi-
ronment layout will not allow the robot to extract any
simple rule to compute its exact position. Obviously in
order to accomplish such a difficult task, the network
must exhibit important internal loops since no static
input provides by itself enough information.

Thus, we used a Khepera robot equipped with the
linear k213 camera turret. It is positioned in an arena
with black and white vertical stripes of random size
painted on the walls at irregular intervals. Moreover, up
to three black cylinder-shaped obstacles are scattered
around. It is a similar environment than described in
(Floreano & Mattiusi 2001) (see figure 4).

Figure 4: The experiment arena.

The controller of the robot is a spiking neural network
with three layers of neurons. The first and third serve
as sensors and motors neurons respectively.

More precisely, the 64 pixels of the k213 linear cam-
era are averaged to provide an array of 16 values which
correspond to the 16 input pixel neurons. These neu-
rons are fed with input current allowing frequencies be-
tween 10Hz and 100Hz. The current value I is calcu-
lated to provide the neuron a desired period P . It was
done simply using the formula :

I = θ
1− γ

1− γP

We recall that γ is the leak (decay rate) and θ the
threshold. Both were constant throughout experiments
and identical for all neurons (Parameters : γ = 0.99
and θ = 1.0). Hence, the values (in grey level) of the
camera pixel are scaled between two frequencies (10Hz
for full black pixels and 100Hz for full white pixels).

The 2 output neurons serve as motoneurons – one
for each motor (left and right). The motor speeds are
proportional to the corresponding neuron firing rate.

The intermediate layer – the hidden layer – consists
on all-to-all connected 40 neurons. Each input neuron
has a connection to each hidden neurons. The weights
of this connection are chosen randomly using a cen-
tered normal law. The standard deviation for the inputs
weights is 0.5. The hidden layer is completely recurrent
and as argued in the previous sections, the standard
deviation for the weights is set to obtain a chaotic net-
work in spontaneous mode (0.2 for 40 neurons). Finally
all hidden layer neurons have a connection to the two
motoneurons. The standard deviation is 0.2.

Between two input informations accessing (approx-
imatively 100 time steps), we let the network evolves
freely.

At each time step, STDP/anti-STDP learning is ap-
plied with scaling factor α = ωR. ω is constant during
the whole experiment (ω = 0.005) and R follows the



rule below :

• R = 1.0 if the robot moves forward,

• R = −1.0 if the robot hits a wall or an obstacle,

• R = 0.0 otherwise.

In other words, when the robot moves forward, we try
to synchronize the internal dynamics with the external
evolving visual flow. We did it in the opposite sense
when it hits an obstacle. In the rest of the time that is
when it stops, move rearward or around, we do nothing.

At the start of a trial, a robot will move randomly
and explore its environment. It will by accident hit an
obstacle or move forward. We tested 10 different ran-
dom network during 150 s (in simulated neural time).
We counted the number of shocks and the number of
time the robot moved forward. The results for a typical
individual are displayed in figure 5.

Figure 5: Number of shocks (plain line below) and num-
ber of steps forward (dashed line above)

The obstacle avoidance was learned for 9 of the 10
networks tested. Even if some of them were very per-
formant the avoidance was never robust. Since the task
need a complete (and fine) coupling between the input
flow and its own speed, the robot was able to stop and
turn only when the obstacles appeared at high speed
(relative to the robot). We tried to move by hand the
obstacles in front of the robot. The obstacle avoidance
is observed when obstacle is moved quickly. This in-
dicates that the internal dynamics is able to extract
the speed of the visual flow (which, here, is the only
way to avoid the obstacles). However, if the obstacle
approaches slowly, the robot is often not able to avoid
it.

Conclusion and perspectives
As argued throughout this article, the path toward total
adaptiveness (in the sense of adapting its own behav-
ior and behavioral structure) rests on the principles of
co-dependence between the robot and its environment.

Respecting these principles enables us to develop and
study robots’ behaviors as well as their structures. It is
a key approach to learning.

Moreover, the critical stage lies in the intrinsic fea-
ture of the controller – a dynamical controller for a
dynamical environment. Thus, for co-dependence to
emerge one needs for the controller to exhibit various
dynamics. In this case, the chaotic nature of recurrent
spiking neural network is a very interesting feature. In-
deed, “learning at the edge of chaos” is a powerful way
to assure an emerging coupling between external and
internal dynamics.

However, we aware of the few steps made in this di-
rection. Indeed, empirical use of this Hebbian rule may
not be enough to extract more than simple behaviors.
Orienting the learning toward an observed behavior cor-
responding with our will will probably be a much more
complicated task. Still, it is obviously the prospect for
future development and work.

Indeed, we have to keep in mind that, in our simple
experiments, the results were considerably more fruitful
concerning the structuration of behaviors - via notably
synchronization - than, for example, genetic adaptation
of weights. This validates partly our approach even if a
deeper understanding of the results is obviously needed.
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