
Engaging Computing Students with AI and Robotics

Deepak Kumar, Doug Blank Tucker Balch, Keith O’Hara, Mark Guzdial Stewart Tansley

Computer Science
Bryn Mawr College

{dkumar, dblank}@cs.brynmawr.edu

College of Computing
Georgia Institute of Technology

{tucker, kjohara, guzdial}@cc.gatech.edu

Microsoft Research
Microsoft Corporation

stansley@microsoft.com

Abstract
In this paper we describe a new curriculum for a CS1 course
that uses personal robots as a context for learning
introductory computer science. Students learn several
computing and AI-related concepts in the process of
exploring and designing robot behaviors. We believe that
the use of personal robots and engaging examples can
provide a good foundation for learning computing and
hence serve to attract a more diverse body of students into
the computing disciplines. In this paper, we describe how
we have embedded numerous AI concepts in the design of
our curriculum.

Introduction
Computer science (CS) has seemingly lost its appeal to
many of today’s students, and personal robots perhaps can
help find it again. Paradoxically, even as computing has
permeated every aspect of our lives, computer science as a
field of study is often seen as disconnected from these
same lives. To reestablish the connection between student
interests and the myriad career and intellectual possibilities
provided by contemporary studies in CS, the Institute for
Personal Robots in Education (IPRE, roboteducation.org)
was created in July 2006.

IPRE is developing a personal robot, software, and modern
curricula to help teach introductory computing courses
(Blank 2006). Our vision is that the text for such an
introductory course would come bundled and shrink-
wrapped with a ready-to-run personal robot in the same
price range as current CS1 texts. Having an artifact—in
this case a ready-to-run robot—provides intrinsic
motivation to both the instructor and the student to explore
the science and engineering behind it. Students engage in
learning computing for reasons today that are very
different from those traditionally identified: such as fun,
curiosity, diverse range of applications that portray
computing as a helpful discipline, and to show off to
family and friends. A project of such undertaking requires
careful attention to all aspects of the course design: the
robot, software, course materials, and the lab environment.

In this paper we will focus on the design of the curriculum
for a CS1 course based on our concept of personal robots.
We will outline a number of AI concepts that have been

key in making the course interesting and engaging. Besides
the use of a robot itself, we have incorporated a number of
AI concepts embedded in the course materials, e.g. robot
control paradigms, vision, game playing, learning, etc.
These concepts are permeated throughout the course
primarily to provide a context for engaging and interesting
robot behaviors and applications. While many of these
concepts traditionally come from the domains of AI, we do
not explicitly identify them as such as AI ideas- we
introduce these concepts stealthily and naturally. There is,
additionally, a full section devoted to AI itself in the latter
part of the course. In the next section, we summarize our
overall approach to the CS1 curriculum design process.

Approach to the curriculum
The key underlying motivations that are driving the
development of the curriculum are presented first.

A personal robot Every student gets her/his own personal
robot. Our vision is that students registered in a CS1 course
taking this approach will go to the bookstore and purchase
his/her own personal robot, just like they would purchase a
text for the course (See Figure 1). Additionally, since the
student owns the robot it can be personalized and used in
future classes.

Figure 1. Student Purchasing a Personal Robot

Let the needs of the curriculum drive the design of the
robot The design of the personal robot is motivated by the
requirements of our new curriculum and is an outcome of
feedback obtained from students in our pilot course
offerings. It is important to understand that we place the
robot firmly in the role of a motivational context – teaching
robotics is not our intent; teaching computing concepts by
illustrating them in a robotic context, is the approach.

Use tools that are easy to use, scale with experience We
want the students to use the tools (computer, programming
language, IDE, etc.) to be such that they are not designed
specifically (and only) for use in CS1. We want the entire
programming environment to be pedagogically scalable to
broader contexts. This way, concepts acquired in the new
CS1 easily carry over into more advanced computing
situations without the need to change the programming
environment.

Robot as a peripheral Instead of directly programming
the robot at the robot’s level (often a microcontroller), the
student uses the full power of a personal computer for
development and debugging. In this mode, the desktop or
notebook computer commands and queries the robot over a
wireless tether.

Create an accessible, engaging environment for new,
diverse population of students It is well acknowledged
today that the introductory computer science curriculum is
broken and is in need of a major overhaul. With that wide
acknowledgement also comes a wide range of proposed
‘solutions’. Ours is one of them. We are taking the issue of
accessibility to a wider population as our primary goal. In
addition, we have been able to introduce many
sophisticated topics using a simple environment. Often, the
really interesting topics (such as AI and robotics) are
reserved for only advanced students. We hope to allow
introductory students to experience some of the excitement
such topics bring to computing. On the other hand, we are
also mindful of the adverse affects the use of certain
technology, and pedagogical examples can have on people
from different gender and backgrounds. Our curricular
materials attempt to address these issues as well.

Computer Science ≠ programming While programming
is central to our approach to CS1 we are also conscious of
avoiding the misperception that programming is all there is
to computer science. Students from the new CS1 should
come away with a solid understanding of the scope of
computing, the role of programming in it.

Make computing a social activity There is an explicit
attempt in our approach to make computing a social
activity. By this we mean that we will strive, in our
curriculum, to make every aspect of the learning process a
collaborative and social activity. Students learn from each

other and by working on their robots in their own
environments (dorm hallways, dining halls, study spaces,
labs) and interacting with others in meaningful ways.

Make computing a medium for creativity Creativity is
central to robot design and we intend to include several
creative aspects into the curriculum. Examples include
exercises that demonstrate robot behaviors like dances,
choreographed movements, music and song generation,
movie making, game playing, robot application design, etc.
Most exercises will be open ended (i.e. correctness of the
output of a program is not determined by a limited set of
output) and encourage students to experiment, play, and be
creative.

Performances vs. competitions All robot exercises in the
course include demonstrations. However, the
demonstrations are going to be depicted and evaluated as
performances and not as competitions among peers. We
have found that competitions tend to attract only a minority
of the student body and serve to deter many students.
However, a non-competitive, collaborative, and social
environment encourages learning and motivates students to
strive for higher goals. If an individual professor chooses
to take a competitive approach, many of our materials and
technologies are still nonetheless appropriate and usable, it
is just not our recommended approach.

The Robot & Software

Figure 2. The Scribbler Robot with IPRE Fluke Board

For the pilot offerings of our courses, we have been using
the Scribbler robot by Parallax Corp. (www.parallax.com)
combined with an add-on board called Fluke, designed by
IPRE (See Figure 2). This package costs approximately
$110 and has the following features: IR obstacle sensors,
three light sensors, IR line sensors, a stall sensor, a color
camera, two programmable LEDs, a two-frequency tone

generator, Bluetooth wireless communication, and a pen
port that can be used for scribbling on the floor. The add-
on board transmits color images, and at faster rates:
grayscale, windowed, and color segmented images.
Students write programs on a host computer that
communicates with the robot over a Bluetooth connection
(with a range of 100 meters).

The programming language used is Python, along with our
API called Myro (for My Robot) which provides easy to
use and yet powerful abstractions for robot programming
and control. Additionally, it incorporates easy to use
features for text-to-speech, creating dialog boxes, image
and multimedia processing, IM-style communication, and
other advanced features.

Myro is inspired by many of the ideas in Pyro (Blank et al,
2006). Myro extends Pyro as an environment more
specifically focused on teaching programming, where as
Pyro has wider goals. Further, Myro expects to leverage
new technologies such as Microsoft Robotics Studio
(micorsoft.com/robotics), bringing extended flexibility to
work with different hardware beyond Scribbler and other
programming languages beyond Python. Further discussion
on these aspects is outside the scope of this paper.

Where is the AI?
In the design of the text for our introductory course, we
have embedded several AI concepts and techniques as well
as several non-AI topics (IPRE 2007). The outline of
chapters of the text is shown below:

1. The World of Robots
2. Personal Robots
3. Building Brains
4. Sensing From Within
5. Sensing The World
6. Insect-like Behaviors
7. Control Paradigms
8. Sights & Sounds
9. Robot Vision
10. Artificial Intelligence
11. Computers & Computation
12. The World of Computing

In the first chapter, students explore the world of robots
using the Mars rovers, Spirit and Opportunity, as
motivating examples. Students are introduced to their own
personal robots: they give their robot a name, personalize
it, and learn how to control them manually through a game
pad controller. Students study the history of robots, and are
introduced to some of the state-of-the-art robot
applications (lawn mowing, vacuuming, surgery, etc.). As
an exercise, students use a game pad controller to explore a
pyramid structure (see Figure 3).

In the next two chapters students learn some basic

programming concepts: names/variables, values, functions
and basic program structure. Students use Myro
abstractions for robot movements (forward, backward,
stop, etc.). A program is introduced as the brain of the
robot. In exercises, students create more sophisticated
robot movements by incorporating them into robot dances.

The chapters on sensing focus on reactive robot control.
Students learn the functionalities of various sensors, how
to obtain their values, and combined with the if-statements,
learn to write several smart robot behaviors. Beginning
with a reactive approach is also advocated by Martin
(Martin, 2007).

Figure 3. Exploring a pyramid exercise.

The Insect-like Behaviors chapter introduces the idea of
creating/programming robot behaviors using the
Braitenberg paradigm (Braitenberg 1984). That is, the
same behaviors that were programmed using reactive
control can also be accomplished by means of simple
mathematical transformations. Students learn to design
several Braitenberg-style robot behaviors and indulge into
a little bit of synthetic psychology. An example brain for
the simplest vehicle is presented below:

def main():
 # Braitenberg vehicle#1: Alive

 # For 60 seconds do the following…
 while timeRemaining(60):
 l = getLight("left")
 r = getLight("right")
 motors(normalize(l), normalize(r))

Students can then explore writing different normalization
functions to observe changes in behaviors.

The chapter on Control Paradigms introduces the concepts
of behavior-based control (Arkin 1998). Students learn
how to program robot behaviors using the subsumption

paradigm. Below, we show the skeletal control structure of
a single-threaded subsumption-based program:

A simple subsumption-style brain
def arbitrate():
 for behavior in behaviors:
 output, T, R = behavior()
 if output:
 return T, R

behaviors, ordered by priority
behaviors = [seekLight, avoid, cruise]

def main():
 while True:
 T, R = arbitrate()
 move(T, R)

main()

In the above program, we take advantage of Python’s
notion of names that essentially render functions as first-
class objects. The complete program above would require
students to write the functions seekLight, avoid, and
cruise. In the design of our programming examples, we
also try to illustrate the view of creating well-structured
programs. We take full advantage of the advanced, yet
easy to use, features of the Python language.

The chapter on Artificial Intelligence introduces the field
of AI and provides a context for learning AI concepts using
robots. We present examples from natural language
processing, case-based reasoning, game playing, and also
machine learning. Some examples are presented as demos
showing what is feasible while others are directly
implementable by students. For example, in discussing
natural language processing, we illustrate the following
interaction with the robot:

User: do you see a wall?
Scribbler: No

User: Beep whenever you see a wall.
User: Turn right whenever you see a
 wall to your left.
User: Turn left whenever you see a wall
 to your right.
User: Move for 60 seconds.

[The Scribbler robot moves around for 60 seconds turning
whenever it sees a wall. It also beeps if it sees a wall.]

We provide an implemented system with which students
are able to enter natural language commands and watch
their robots respond to them. While we discuss the
architecture of this implementation at an abstract level, the
details are beyond the level of this course. However, it
provides the students first-hand experience with AI

programs that are essentially built using the techniques
they have learned earlier in the course. Sentences entered
are parsed using facilities provided in NLTK (Bird and
Loper 2004) and analyzed into a dynamic subsumption
control architecture (Blank et al 2007, Walker 2007).

Examples of case-based reasoning are illustrated in the
domain of the Rock-Paper-Scissors game (using case
histories of past games to beat the human player). Machine
learning is illustrated using backprop networks to learn the
kinds of behaviors that students programmed in earlier
chapters. Myro includes an abstract neural network
modeling module, conx that enables students to explore
these ideas without getting bogged down by the details of
neural network implementations (Blank et al 2006). Using
abstract functions, students can design and specify a
network architecture, provide learning parameters and then
watch their robots/networks learn the behaviors.

Additional topics which are often reserved for only
advanced computing students can also be explored. For
example, using easy-to-use functions for image processing
allows students to explore topics in real-time computer
vision (Guzdial, 2005). In the chapter on Robot Vision
students are challenged to have their robot find the
pyramid and approach it. One solution to this problem is to
identify the pyramid in an image. Luckily, the pyramid
happens to be fluorescent orange. Using a feedback
algorithm, the students can write a short program to move
towards the pyramid:

pic = takePicture()
show(pic) # Figure 4, top picture
xs, ys, count = 0, 0, 0
for pixel in getPixels(pic):
 r, g, b = getRGB(pixel)

 if r > 250 and b < 100 and g > 130:

Figure 4: Image Processing

 setColor(pixel, white)
 xs += getX(pixel)
 ys += getY(pixel)
 count += 1
 else:
 setColor(pixel, black)

show(pic) # Figure 4, bottom picture

Thus, numerous AI concepts are implicitly or explicitly
embedded into the design of the curriculum: reactive
control, Braitenberg-style control, behavior-based control,
natural language processing, case-based reasoning, game
playing, machine learning, and image processing. There
are additional chapters on other non-AI topics: sound,
music, communications, computation, etc.

In taking a fresh view of introductory computing courses
our goal has been to design a coherent approach to the use
of personal robots as a context for learning computing. In
that way, we have been open to any domains and examples
that lend themselves naturally to the context. As can be
seen, AI (and other domains) lends themselves naturally to
this design framework. What we are able to incorporate has
been a result of conscious deliberations on the introductory
nature of the course and serving the underlying philosophy
of our approach as outlined earlier. We have discovered
that the resulting course takes full advantage of several
advances: in hardware design, software design, robotics,
and AI. The course syllabus goes well beyond a traditional
CS course as recommended by ACM Curriculum 2001
(Computing Curricula 2001) and introduces a healthy dose
of interesting and engaging ideas for motivating students to
learn computing.

Pilot Courses and Assessment
The materials have been used in six pilot offerings of CS1
courses: at Bryn Mawr College in spring and fall 2007 with
60 students (nearly all women), at Georgia Tech in spring,
summer, and fall 2007 with over 200 students. Spring 2007
was a particularly opportune time to study the Georgia
Tech class because the same lecturer was in both our
robotics and non-robotics introductory course sections.
We studied both sections using the same survey
instruments. Our evaluation had three stages:

• We conducted a midterm survey to gather open-ended

comments on what students thought about the classes.
• We used the survey comments to develop an interview

script that we used with three students in the robotics
section of the course at Georgia Tech.

• We analyzed the interview scripts to identify themes—
opinions or attitudes that we wanted to explore in the
course. We constructed a final survey, which was
completed by participants on both campuses and in
both versions of the course.

Extensive feedback (both qualitative and qualitative) was
collected from all completed courses. The results obtained
from students can be summarized in these main points:

• Students learned CS concepts through robots
• Robots made learning experience more hands-on,

tangible, and exciting
• Most frustrating parts were dealing with robot

hardware inconsistencies
• Viewed CS as a type of logic and problem

solving; requiring patience & thought
• Discovered that CS and robots are applicable to

the real world

The goal of our pilot offerings is to refine our curriculum,
help evolve the software, and to use the feedback obtained
from students to design the specifications of the eventual
personal robot that will be used in subsequent offerings.
The initial results are encouraging, and informative. Our
plans in the near future include expanding the pilot
offerings to other institutions and to hold workshops to
train faculty in the use of this approach.

Beyond CS1
As we proceed with our project, we are also aware of the
attractiveness of our software and robot platform for other
upper-level courses. We have already seen some adoption
in computer science and other engineering departments.
We ourselves have found places where advanced students
can use the robots and software for their research projects
(Blank et al 2007, Walker 2007). Our goal of making the
entire design pedagogically scalable contributes directly
towards these applications that go beyond the introductory
curriculum.

Another important goal of our project is to make the Myro
API available for several other robot platforms, much like
we did for our earlier work on Pyro (Blank et al 2006).
This will no doubt increase the viability of our work
beyond CS1 courses.

On Engaging Students
The issue of attracting, and retaining students into the
computing disciplines lies at the heart of the current
enrollment crisis in computing (Vesgo 2005). The issue is
multi-faceted and therefore will require multi-faceted
approaches and solutions. There have been several studies
devoted to examining these issues. Several key factors
have been identified as deterrents for students to enter the
field of computing (Margolis and Fisher 2003, Burger et al
2007). Many of these studies also provide
recommendations on overcoming the barriers, especially to
attract women into computing. In our minds, one of the key
finding has been the alignment of course content to student

interests to increase student engagement that can have a
positive impact on students choosing to enter computing as
a major in college (Bair and Marcus 2007, Akbulut and
Looney 2007).

Introductory computing courses in the undergraduate
courses serve as a gateway into the computing curriculum.
It is therefore imperative to pay special attention to the
design of these courses. Our approach represents an
attempt to provide interesting and diverse range of
examples and exercises where the focus is on the context
of the applications (robot behaviors in most cases) and not
on the specific programming features one has to master.
The latter are a side-effect of this activity. This provides an
innovative pedagogical approach and it challenges students
in unique ways. Most of the tasks assigned to the students
are attainable and provide a basis for supportive and
positive feedback to students. These factors have been
identified as significant parameters that can lead students
to pursue further studies in computing (Akbulut and
Looney 2007). It has also been identified that exposure to
creative computer applications is essential to compensate
for high school experience in computing that mostly
involves pedestrian uses of computers (Bair and Marcus
2007).

Summary
In this paper, we have described how we have taken
advantage of the engaging aspects of AI robotics concepts
to motivate students in a CS1. The curriculum deviates
from traditional approaches to CS1, and yet provides a
comprehensive and engaging treatment of traditional CS1
concepts. In many ways, the curriculum goes beyond the
traditional notion of a CS1 syllabus. Yet, the key driving
factor in the design of this curriculum is the exploratory
and engaging nature of robots. We believe that the use of
personal robots and engaging examples can provide a
sound foundation for learning computing and also serve to
attract a more diverse body of students into the computing
disciplines.

Acknowledgements
This work is being supported by grants from Microsoft
Research, Georgia Institute of Technology, and Bryn
Mawr College.

References
Akbulut, A. Y. and Looney, C.A. 2007. Inspiring Students
to Pursue Computing Degrees. Communications of the
ACM (CACM). Volume 50, Number 10. October 2007.

Arkin, R. 1998. Behavior-Based Robotics. MIT Press.

Bair, B. and Marcus, M. 2007. Women’s Interest in IT:

The Fun Factor. In (Burger et al 2007).

Blank, D; Kumar, D.; Marshall, J.; and Meeden, L. 2007.
Advanced Robotics Projects for Undergraduate Students.
In Robots and Robot Venues: Resources for AI Education.
AAAI Spring Symposium Series Technical Report SS-07-
09. 10-15. AAAI Press.

Blank, D; Kumar, D.; Meeden, L.; and Yanco, H. 2006.
The Pyro Toolkit for AI and Robotics. AI Magazine,
27(1):39-50.

Blank, D. 2006. Robots Make Computer Science Personal.
Communications of the ACM, Volume 49, issue 12, pages
25-27. New York: ACM Press. [CITE THIS]

Bird, S. and Loper, E. 2004, NLTK: The Natural Language
Toolkit. In Proceedings of the 4th International Conference
on Natural Language Processing (ICON), 11-18. Allied
Publishers.

Braitenberg, V. 1984. Vehicles: Experiments in Synthetic
Psychology. MIT Press.

Brooks, R. 1986. A robust layered control system for a
mobile robot. IEEE Journal of Robotics and Automation
RA-2(1):14-23.

Burger, C.; Creamer, E.; and Meszaros, P (editors). 2007.
Reconfiguring the Firewall: Recruiting Women to
Information Technology across Cultures and Continents.
AK Peters.

Computing Curricula 2001. Journal on Educational
Resources in Computing. Volume 1, Issue 1. ACM Press.

Guzdial, M. 2005. Introduction to Computing and
Programming Python: A Multimedia Approach. Pearson
Prentice Hall.

IPRE. 2007. Learning Computing with Robots. Text in
development. wiki.roboteducation.org.

Margolis, J. and Fisher, A. 2003. Unlocking the Clubhouse.
MIT Press.

Martin, F. 2007. Real Robots Don't Drive Straight. In
AAAI Spring Symposium, Robots and Robot Venues:
Resources for AI Education.

Vegso, J. 2005. Interest in CS as a major drops among
incoming freshmen. Computing Research News 17, 3 (May
2005); www.cra.org/CRN/articles/may05/vegso.

Walker, A. 2007. Natural Language Interaction with
Robots. http://wiki.cs.brynmawr.edu/?page=Natural
Language Interaction with Robots. Senior Thesis. Bryn
Mawr College.

