
 

229 
 

 

Artificial 
Intelligence 

 
 
David: Martin is Mommy and Henry's real son. After I find the Blue Fairy then I can 
go home. Mommy will love a real boy. The Blue Fairy will make me into one. 
Gigolo Joe: Is Blue Fairy Mecha, Orga, man or woman? 
David: Woman. 
Gigolo Joe: Woman? I know women! They sometimes ask for me by name. I know 
all about women. About as much as there is to know. No two are ever alike, And 
after they've met me, no two are ever the same. And I know where most of them 
can be found. 
David: Where? 
Gigolo Joe: Rouge City. Across the Delaware.  
 
-: Dialog between two Artificial Intelligence entities: Gigolo Joe (played by Jude 
Law) and David (played by Haley Joel Osment) in the movie, Artificial Intelligence 
(2001), Directed by Steven Speilberg, Warner Bros.



Chapter 10 
 

230 
 

The Question of Intelligence 

The quest for the understanding of intelligence probably forms the oldest and 
yet to be fully understood human inquiry. With the advent of computers and 
robots the question of whether robots and computers can be as intelligent as 
humans has driven the scientific pursuits in the field of Artificial Intelligence 
(AI). Whether a computer can be intelligent was lucidly discusses by 
Professor Alan Turing in 1950. To illustrate the issues underlying machine 
intelligence, Turing devised a thought experiment in the form of an imitation 
game. It is played with three people, a man, a woman, and an interrogator. 
They are all in separate rooms and interact with each other by typing text into 
a computer (much like the way people interact with each other over IM or 
other instant messaging services). The interrogator's task is to identify which 
person is a man (or woman). To make the game interesting, either player can 
try and be deceptive in giving their answers. Turing argues that a computer 
should be considered intelligent if it could be made to play the role of either 
player in the game without giving itself away. This test of intelligence has 
come to be called the Turing Test and has generated much activity in the 
community of AI researchers (see exercises below). The dialog shown above, 
from the movie Artificial Intelligence, depicts an aspect of the test of 
intelligence designed by Alan Turing. Based on the exchange between Gigolo 
Joe and David, can you conclude that they are both intelligent? Human?  

After over five decades of AI research, the field has matured, and evolved in 
many ways. For one, the focus on intelligence is no longer limited to humans: 
insects and other forms of animals depict varying degrees and kinds of 
intelligence have been the subject of study within AI. There has also been a 
fruitful exchange of ideas and models between AI scientists, biologists, 
psychologists, cognitive scientists, neuroscientists, linguists and philosophers. 
You saw examples of such an influence in the models of Braitenberg vehicles 
introduced earlier. Given the diversity of researchers involved in AI there has 
also been an evolution of what AI itself is really about. We will return to this 
later in the chapter. First, we will give you a few examples of models that 
could be considered intelligent that are commonly used by many AI scientists.  
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Language Understanding 

One aspect of intelligence acknowledged by many people is the use of 
language. People communicate with each other using a language. There are 
many (several thousand) languages in use on this planet. Such languages are 
called natural languages. Many interesting theories have been put forward 
about the origins of language itself. An interesting question to consider is: 
Can people communicate with computers using human (natural) languages? 
In other words, can a computer be made to understand language? Think about 
that for a minute and see if you can come up with a possible answer.  

To make the question of language understanding more concrete, think of your 
Scribbler robot. So far, you have controlled the behavior of the robot by 
writing Python programs for it. Is it possible to make the Scribbler understand 
English so that you could interact with it in it? What would an interaction with 
Scribbler look like? Obviously, you would not expect to have a conversation 
with the Scribbler about the dinner you ate last night. However, it would 
probably make sense to ask it to move in a certain way? Or to ask whether it 
is seeing an obstacle ahead? 

Do this: Write down a series of short 1-word commands like: forward, right, 
left, stop, etc. Create a vocabulary of commands and then write a program that 
inputs a command at a time interprets it and makes the Scribbler carry it out. 
For example: 

You: forward 
Scribbler: starts moving forward… 
You: right 
Scribbler starts turning right… 
You: stop 
… 

Experiment with the behavior of the robot based on these commands and 
think about the proper interpretation that may make its behavior more natural.  
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You will find yourself making several assumptions about interpretation of 
even the simplest commands in the exercise above. For example, what 
happens when after you command the Scribbler to move forward, you ask it to 
turn right? Should the Scribbler stop going forward or should it stop and then 
start turning? 

Decisions like these also give deep insights into our own abilities of 
understanding language. You can also see that, as in the case of visual 
perception, processing of language (or text) begins at a very primitive level: 
words. If the input is speech, the basic units are electrical signals, perhaps 
coming from a microphone. Just like processing individual pixels to try and 
understand the contents of an image, one has to start at a low level of 
representation for beginning to understand language. 

Researchers working in the field of computational linguistics (or natural 
language understanding) have proposed many theories of language 
processing that can form the basis of a computational model for a Scribbler to 
understand a small subset of the English language. In this section, we will 
examine one such model which is based on the processing of syntax and 
semantics of language interaction. Imagine, interacting with the Scribbler 
using the following set of sentences:  

You: do you see a wall? 
Scribbler: No 
 
You: Beep whenever you see a wall. 
You: Turn right whenever you see a wall to your left. 
You: Turn left whenever you see a wall to your right. 
You: Move for 60 seconds. 
 
[The Scribbler robot moves around for 60 seconds turning 
whenever it sees a wall. It also beeps whenever it sees a 
wall.] 

Earlier, you have written Python programs that perform similar behaviors. 
However, now imagine interacting with the robot in the fashion described. 
From a physical perspective, imagine that you are sitting in front of a 
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computer, and you have a Bluetooth connection to the robot. The first 
question then becomes: Are you actually speaking or typing the above 
commands? From an AI perspective, both modalities are possible: You could 
be sitting in front of the computer and speaking into a microphone; or you 
could be typing those commands on the keyboard. In the first instance, you 
would need a speech understanding capability. Today, you can obtain 
software (commercial as well as freeware) that will enable you to do this. 
Some of these systems are capable of distinguishing accents, intonations, male 
or female voices etc. Indeed, speech and spoken language understanding is a 
fascinating field of study that combines knowledge from linguistics, signal 
processing, phonology, etc.  

You can imagine that the end result of speaking into a computer is a piece of 
text that transcribes what you said. So, the question posed to the Scribbler 
above: Do you see a wall? will have to be processed and then transcribed into 
text. Once you have the text, that is, a string “Do you see a wall?” it can 
be further processed or analyzed to understand the meaning or the content of 
the text. The field of computational linguistics provides many ways of 
syntactic parsing, analyzing, and extracting meaning from texts. Researchers 
in AI itself have developed ways of representing knowledge in a computer 
using symbolic notations (e.g. formal logic). In the end, the analysis of the 
text will result in a getIR() or getObstacle() command to the Scribbler 
robot and will produce in a response shown above. 

Our goal of bringing up the above scenario here is to illustrate to you various 
dimensions of AI research that can involve people from many different 
disciplines. These days, it is entirely possible even for you to design and build 
computer programs or systems that are capable of interacting with robots 
using language. 

Game Playing 

In the early history of AI, scientists posed several challenging tasks which if 
performed by computers could be used as a way of demonstrating the 
feasibility of machine intelligence. It was common practice to think of games 
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in this realm. For example, if a computer could play a game, like chess, or 
checkers, at the same level or better that humans we would we convinced into 
thinking that it was indeed feasible to think of a computer as a possible 
candidate for machine intelligence. Some of the earliest demonstrations of AI 
research included attempts at computer models for playing various games. 
Checkers and chess seemed to be the most popular choices, but researchers 
have indulged themselves into examining computer models of many popular 
games: poker, bridge, scrabble, backgammon, etc.  

In many games, it is now possible for computer models to play at the highest 
levels of human performance. In Chess, for example, even though the earliest 
programs handily beat novices in the 1960's, it wasn't until 1996 when an 
IBM computer chess program, named Deep Blue, beat the world champion 
Gary Kasparov at a tournament-level game, though Kasparov did manage to 
win the match 4-2. A year later, in New York, Deep Blue beat Kasparov in a 6 
game match representing the very first time a computer beat the best human 
player in a classical style game of chess. While these accomplishments are 
worthy of praise it also now clear that the quest for machine intelligence is not 
necessarily answered by computer game playing. This has resulted in much 
progress in game playing systems and game playing technology which now 
stands in its own right as a multi-billion dollar industry.  

It turns out that in many chess-like games the general algorithm for a 
computer to play the game is very similar. Such games are classified as two-
person zero-sum games: two people/computers play against each other and the 
result of the game is either a win for one player and loss for the other, or it is a 
draw (which makes it a zero-sum end result). In many such games, the basic 
strategy for making the next move is simple: look at all the possible moves I 
have and for each of them all the possible moves the other player might have 
and so on until the very end. Then, trace back from wins (or draws) and make 
the next move based on those desirable outcomes. You can see this easily in a 
simple Tic-Tac-Toe game (see picture below):  
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When you play against an opponent, you are anticipating possible moves 
down the road and then playing your own moves with those in mind. Good 
players are able to mentally picture the game several moves ahead. In many 
games, like Chess, certain recognizable situations lead to well determined 
outcomes and so a great part of playing a successful game also relies on the 
ability to recognize those situations. Looking ahead several moves in a 

systematic manner is something computers are quite capable of doing and 
hence anyone (even you!) can turn them into fairly good players. The 
challenge lies in the number of moves you can look ahead and in the limited 
capacity, if time to make the next move is limited, how to choose among the 
best available options? These decisions lend interesting character to computer 
game programs and continue to be a constant source of fascination for many 
people. For example, a computer program to play Tic-Tac-Toe can easily look 
at all the possible moves all the way to the end of game in determining its next 
move (which, in most situations leads to a draw, given the simplicity of the 

A Tic Tac Toe Game Tree to look for possible next moves for X 
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game). However, if you consider a typical game of Chess, in which each 
player makes an average of 32 moves and the number of feasible moves 
available at any time averages around 10, you would soon realize that the 
computer would have to examine something of the order of 10^65 board 
positions before making a move! This, even for the fastest computers 
available today, will take several gazillion years! More on that later. But, to 
play an interesting two-person zero-sum game, it is not essential to look so far 
ahead.  

In Chapter 7, you saw an example of a program that played the game of 
Paper-Scissors-Rock against a human user. In that version, the program’s 
choice strategy for picking an object was completely random. We reproduce 
that section of the program here: 

… 
items = ["Paper", "Scissors", "Rock"] 
… 
# Computer makes a selection 
myChoice = items[randint(0, 2)] 
… 

In the above program segment, myChoice is the program’s choice. As you can 
see, the program uses a random number to select its object. That is, the 
likelihood of picking any of the three objects is 0.33 or 33%. The game and 
winning strategies for this game have been extensively studied. Some 
strategies rely on detecting patterns in human choice behavior. Even though 
we may not realize it there are patterns in our seemingly random behavior. 
Computer programs can easily track such behavior patterns by keeping long 
histories of player’s choices, detect them, and then design strategies to beat 
those patterns. This has been shown to work quite effectively. It involves 
recording player’s choices and searching through them (see Exercises). 
Another strategy is to study human choice statistics in this game. Before we 
present you with some data, do the exercise suggested below: 
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Do This: Play the game against a few people, Play several dozen rounds. 
Record the choices made by each player (just write a P/S/R in two columns). 
Once done, compute the percentages of each object picked. Now read on. 

It turns out that most casual human players are more prone towards picking 
Rock than Paper or Scissors. In fact, various analyses suggest that 36% of the 
time people tend to pick Rock, 30% Paper, and 34% Scissors. This suggests 
that RPS is not merely a game of chance there is room for some strategies at 
winning. Believe it or not, there are world championships of PSR held each 
year. Even a simple game like this has numerous possibilities. We can use 
some of this information, for instance, to make our program smarter or better 
adept at playing the game. All we have to do is instead of using a fair 33% 
chance of selecting each object we can skew the chances of selection based on 
people’s preferences. Thus, if 36% of the time people tend to pick Rock, it 
would be better for our program to pick Paper 36% of the time since Paper 
beats Rock. Similarly, our program should pick Scissors 30% of the time to 
match the chance of beating Paper, and pick Rock 34% of the time to match 
the chances of beating Paper. We can bias the random number generator using 
these percentages as follows: 

First generate a random number in the range 0..99 
If the number generated is in the range 0..29, select Scissors (30%) 
If the number generated is in the range 30..63, select Rock (34%) 
If the number generated is in the range 64..99, select Paper (36%) 

The above strategy of biasing the random selection can be implemented as 
follows: 

def mySelection(): 

    # First generate a random number in the range 0..99 
    n = randrange(0, 100) 

    # If the n is in range 0..29, select Scissors 
    if n <= 29: 
        return "Scissors" 
    elif n <= 63: 
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        # if n in range 30..63, select Rock 
        return "Rock" 
    else: 
        return "Paper" 

Do This: Modify your RPS program from Chapter 7 to use this strategy. Play 
the game several times. Does it perform much better that the previous 
version? You will have to test this by collecting data from both versions 
against several people (make sure they are novices!).  

Another strategy that people use is based upon the following observation: 

After many rounds, people tend to make the move that would have beaten 
their own previous move. 

That is, if say a player picks Paper. Their next pick will be Scissors. A 
computer program or a player playing against this player should then pick 
Rock to beat Scissors. Since the relationship between the choices is cyclical 
the strategy can be implemented by picking the thing that beats the opponent’s 
pervious move beats. Paper beats Rock. Therefore since the player’s previous 
move was Paper, your program can pick Rock in anticipation of the player’s 
pick of Scissors. Try to think over this carefully and make sure your head is 
not spinning by the end of it. If a player can spot this they can use this as a 
winning strategy. We will leave the implementation the of last strategy as an 
exercise. The exercises also suggest another strategy.  

The point of the above examples is that using strategies in your programs you 
can make your programs smarter or more intelligent. Deliberately, we have 
started to use the term intelligence a little more loosely than what Alan Turing 
implied in his famous essay. Many people would argue that these programs 
are not intelligent in the ultimate sense of the word. We agree. However, 
writing smarter programs is a natural activity. If the programs incorporate 
strategies or heuristics that people would use when they are doing the same 
activity, then the programs have some form of artificial intelligence in them. 
Even if the strategy used by the program is nothing like what people would 
use, but it would make the program smarter or better, we would call it 
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artificial intelligence. Many people would disagree with this latter claim. To 
some, the quest for figuring out intelligence is limited to the understanding of 
intelligence in humans (and other animals). In AI both points of view are quite 
prevalent and make for some passionate debates among scholars. 

Learning 

Here we will give you an overview of machine learning, introduce you to the 
idea of computational neural networks, and then show you how using the 
Myro modules for neural networks, you can design a learning program for 
your Scribbler robot to learn how to avoid obstacles. Yet to be written… 

Discussion 

The very idea of considering a computer as an intelligent device has its 
foundations in the general purpose nature of computers. By changing the 
program the same computer can be made to behave in many different ways. 
At the core of it a computer is just a symbol manipulator: manipulating 
encodings for numbers, or letters, or images, etc. It is postulated that the 
human brain is also a symbol manipulator. The foundations of AI lie in the 
fact that most intelligent systems are physical symbol systems and since a 
computer is a general purpose symbol manipulator, it can be used for studying 
or simulating intelligence.  

Myro Review 
 

There were no new Myro features introduced in this chapter. Actually, when 
the chapter is complete it will have Myro primitives for neural nets/connx 
described here. 

Python review 
 
No new Python features were introduced in this chapter. 
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Exercises 
 
1. Read Alan Turing’s paper Computing Machinery and Intelligence. You can 
easily find a copy of it by searching on the web. 

2. More to come… 


