

229

Artificial
Intelligence

David: Martin is Mommy and Henry's real son. After I find the Blue Fairy then I can
go home. Mommy will love a real boy. The Blue Fairy will make me into one.
Gigolo Joe: Is Blue Fairy Mecha, Orga, man or woman?
David: Woman.
Gigolo Joe: Woman? I know women! They sometimes ask for me by name. I know
all about women. About as much as there is to know. No two are ever alike, And
after they've met me, no two are ever the same. And I know where most of them
can be found.
David: Where?
Gigolo Joe: Rouge City. Across the Delaware.

-: Dialog between two Artificial Intelligence entities: Gigolo Joe (played by Jude
Law) and David (played by Haley Joel Osment) in the movie, Artificial Intelligence
(2001), Directed by Steven Speilberg, Warner Bros.

Chapter 10

230

The Question of Intelligence

The quest for the understanding of intelligence probably forms the oldest and
yet to be fully understood human inquiry. With the advent of computers and
robots the question of whether robots and computers can be as intelligent as
humans has driven the scientific pursuits in the field of Artificial Intelligence
(AI). Whether a computer can be intelligent was lucidly discusses by
Professor Alan Turing in 1950. To illustrate the issues underlying machine
intelligence, Turing devised a thought experiment in the form of an imitation
game. It is played with three people, a man, a woman, and an interrogator.
They are all in separate rooms and interact with each other by typing text into
a computer (much like the way people interact with each other over IM or
other instant messaging services). The interrogator's task is to identify which
person is a man (or woman). To make the game interesting, either player can
try and be deceptive in giving their answers. Turing argues that a computer
should be considered intelligent if it could be made to play the role of either
player in the game without giving itself away. This test of intelligence has
come to be called the Turing Test and has generated much activity in the
community of AI researchers (see exercises below). The dialog shown above,
from the movie Artificial Intelligence, depicts an aspect of the test of
intelligence designed by Alan Turing. Based on the exchange between Gigolo
Joe and David, can you conclude that they are both intelligent? Human?

After over five decades of AI research, the field has matured, and evolved in
many ways. For one, the focus on intelligence is no longer limited to humans:
insects and other forms of animals depict varying degrees and kinds of
intelligence have been the subject of study within AI. There has also been a
fruitful exchange of ideas and models between AI scientists, biologists,
psychologists, cognitive scientists, neuroscientists, linguists and philosophers.
You saw examples of such an influence in the models of Braitenberg vehicles
introduced earlier. Given the diversity of researchers involved in AI there has
also been an evolution of what AI itself is really about. We will return to this
later in the chapter. First, we will give you a few examples of models that
could be considered intelligent that are commonly used by many AI scientists.

Artificial Intelligence

231

Language Understanding

One aspect of intelligence acknowledged by many people is the use of
language. People communicate with each other using a language. There are
many (several thousand) languages in use on this planet. Such languages are
called natural languages. Many interesting theories have been put forward
about the origins of language itself. An interesting question to consider is:
Can people communicate with computers using human (natural) languages?
In other words, can a computer be made to understand language? Think about
that for a minute and see if you can come up with a possible answer.

To make the question of language understanding more concrete, think of your
Scribbler robot. So far, you have controlled the behavior of the robot by
writing Python programs for it. Is it possible to make the Scribbler understand
English so that you could interact with it in it? What would an interaction with
Scribbler look like? Obviously, you would not expect to have a conversation
with the Scribbler about the dinner you ate last night. However, it would
probably make sense to ask it to move in a certain way? Or to ask whether it
is seeing an obstacle ahead?

Do this: Write down a series of short 1-word commands like: forward, right,
left, stop, etc. Create a vocabulary of commands and then write a program that
inputs a command at a time interprets it and makes the Scribbler carry it out.
For example:

You: forward
Scribbler: starts moving forward…
You: right
Scribbler starts turning right…
You: stop
…

Experiment with the behavior of the robot based on these commands and
think about the proper interpretation that may make its behavior more natural.

Chapter 10

232

You will find yourself making several assumptions about interpretation of
even the simplest commands in the exercise above. For example, what
happens when after you command the Scribbler to move forward, you ask it to
turn right? Should the Scribbler stop going forward or should it stop and then
start turning?

Decisions like these also give deep insights into our own abilities of
understanding language. You can also see that, as in the case of visual
perception, processing of language (or text) begins at a very primitive level:
words. If the input is speech, the basic units are electrical signals, perhaps
coming from a microphone. Just like processing individual pixels to try and
understand the contents of an image, one has to start at a low level of
representation for beginning to understand language.

Researchers working in the field of computational linguistics (or natural
language understanding) have proposed many theories of language
processing that can form the basis of a computational model for a Scribbler to
understand a small subset of the English language. In this section, we will
examine one such model which is based on the processing of syntax and
semantics of language interaction. Imagine, interacting with the Scribbler
using the following set of sentences:

You: do you see a wall?
Scribbler: No

You: Beep whenever you see a wall.
You: Turn right whenever you see a wall to your left.
You: Turn left whenever you see a wall to your right.
You: Move for 60 seconds.

[The Scribbler robot moves around for 60 seconds turning
whenever it sees a wall. It also beeps whenever it sees a
wall.]

Earlier, you have written Python programs that perform similar behaviors.
However, now imagine interacting with the robot in the fashion described.
From a physical perspective, imagine that you are sitting in front of a

Artificial Intelligence

233

computer, and you have a Bluetooth connection to the robot. The first
question then becomes: Are you actually speaking or typing the above
commands? From an AI perspective, both modalities are possible: You could
be sitting in front of the computer and speaking into a microphone; or you
could be typing those commands on the keyboard. In the first instance, you
would need a speech understanding capability. Today, you can obtain
software (commercial as well as freeware) that will enable you to do this.
Some of these systems are capable of distinguishing accents, intonations, male
or female voices etc. Indeed, speech and spoken language understanding is a
fascinating field of study that combines knowledge from linguistics, signal
processing, phonology, etc.

You can imagine that the end result of speaking into a computer is a piece of
text that transcribes what you said. So, the question posed to the Scribbler
above: Do you see a wall? will have to be processed and then transcribed into
text. Once you have the text, that is, a string “Do you see a wall?” it can
be further processed or analyzed to understand the meaning or the content of
the text. The field of computational linguistics provides many ways of
syntactic parsing, analyzing, and extracting meaning from texts. Researchers
in AI itself have developed ways of representing knowledge in a computer
using symbolic notations (e.g. formal logic). In the end, the analysis of the
text will result in a getIR() or getObstacle() command to the Scribbler
robot and will produce in a response shown above.

Our goal of bringing up the above scenario here is to illustrate to you various
dimensions of AI research that can involve people from many different
disciplines. These days, it is entirely possible even for you to design and build
computer programs or systems that are capable of interacting with robots
using language.

Game Playing

In the early history of AI, scientists posed several challenging tasks which if
performed by computers could be used as a way of demonstrating the
feasibility of machine intelligence. It was common practice to think of games

Chapter 10

234

in this realm. For example, if a computer could play a game, like chess, or
checkers, at the same level or better that humans we would we convinced into
thinking that it was indeed feasible to think of a computer as a possible
candidate for machine intelligence. Some of the earliest demonstrations of AI
research included attempts at computer models for playing various games.
Checkers and chess seemed to be the most popular choices, but researchers
have indulged themselves into examining computer models of many popular
games: poker, bridge, scrabble, backgammon, etc.

In many games, it is now possible for computer models to play at the highest
levels of human performance. In Chess, for example, even though the earliest
programs handily beat novices in the 1960's, it wasn't until 1996 when an
IBM computer chess program, named Deep Blue, beat the world champion
Gary Kasparov at a tournament-level game, though Kasparov did manage to
win the match 4-2. A year later, in New York, Deep Blue beat Kasparov in a 6
game match representing the very first time a computer beat the best human
player in a classical style game of chess. While these accomplishments are
worthy of praise it also now clear that the quest for machine intelligence is not
necessarily answered by computer game playing. This has resulted in much
progress in game playing systems and game playing technology which now
stands in its own right as a multi-billion dollar industry.

It turns out that in many chess-like games the general algorithm for a
computer to play the game is very similar. Such games are classified as two-
person zero-sum games: two people/computers play against each other and the
result of the game is either a win for one player and loss for the other, or it is a
draw (which makes it a zero-sum end result). In many such games, the basic
strategy for making the next move is simple: look at all the possible moves I
have and for each of them all the possible moves the other player might have
and so on until the very end. Then, trace back from wins (or draws) and make
the next move based on those desirable outcomes. You can see this easily in a
simple Tic-Tac-Toe game (see picture below):

Artificial Intelligence

235

When you play against an opponent, you are anticipating possible moves
down the road and then playing your own moves with those in mind. Good
players are able to mentally picture the game several moves ahead. In many
games, like Chess, certain recognizable situations lead to well determined
outcomes and so a great part of playing a successful game also relies on the
ability to recognize those situations. Looking ahead several moves in a

systematic manner is something computers are quite capable of doing and
hence anyone (even you!) can turn them into fairly good players. The
challenge lies in the number of moves you can look ahead and in the limited
capacity, if time to make the next move is limited, how to choose among the
best available options? These decisions lend interesting character to computer
game programs and continue to be a constant source of fascination for many
people. For example, a computer program to play Tic-Tac-Toe can easily look
at all the possible moves all the way to the end of game in determining its next
move (which, in most situations leads to a draw, given the simplicity of the

A Tic Tac Toe Game Tree to look for possible next moves for X

Chapter 10

236

game). However, if you consider a typical game of Chess, in which each
player makes an average of 32 moves and the number of feasible moves
available at any time averages around 10, you would soon realize that the
computer would have to examine something of the order of 10^65 board
positions before making a move! This, even for the fastest computers
available today, will take several gazillion years! More on that later. But, to
play an interesting two-person zero-sum game, it is not essential to look so far
ahead.

In Chapter 7, you saw an example of a program that played the game of
Paper-Scissors-Rock against a human user. In that version, the program’s
choice strategy for picking an object was completely random. We reproduce
that section of the program here:

…
items = ["Paper", "Scissors", "Rock"]
…
Computer makes a selection
myChoice = items[randint(0, 2)]
…

In the above program segment, myChoice is the program’s choice. As you can
see, the program uses a random number to select its object. That is, the
likelihood of picking any of the three objects is 0.33 or 33%. The game and
winning strategies for this game have been extensively studied. Some
strategies rely on detecting patterns in human choice behavior. Even though
we may not realize it there are patterns in our seemingly random behavior.
Computer programs can easily track such behavior patterns by keeping long
histories of player’s choices, detect them, and then design strategies to beat
those patterns. This has been shown to work quite effectively. It involves
recording player’s choices and searching through them (see Exercises).
Another strategy is to study human choice statistics in this game. Before we
present you with some data, do the exercise suggested below:

Artificial Intelligence

237

Do This: Play the game against a few people, Play several dozen rounds.
Record the choices made by each player (just write a P/S/R in two columns).
Once done, compute the percentages of each object picked. Now read on.

It turns out that most casual human players are more prone towards picking
Rock than Paper or Scissors. In fact, various analyses suggest that 36% of the
time people tend to pick Rock, 30% Paper, and 34% Scissors. This suggests
that RPS is not merely a game of chance there is room for some strategies at
winning. Believe it or not, there are world championships of PSR held each
year. Even a simple game like this has numerous possibilities. We can use
some of this information, for instance, to make our program smarter or better
adept at playing the game. All we have to do is instead of using a fair 33%
chance of selecting each object we can skew the chances of selection based on
people’s preferences. Thus, if 36% of the time people tend to pick Rock, it
would be better for our program to pick Paper 36% of the time since Paper
beats Rock. Similarly, our program should pick Scissors 30% of the time to
match the chance of beating Paper, and pick Rock 34% of the time to match
the chances of beating Paper. We can bias the random number generator using
these percentages as follows:

First generate a random number in the range 0..99
If the number generated is in the range 0..29, select Scissors (30%)
If the number generated is in the range 30..63, select Rock (34%)
If the number generated is in the range 64..99, select Paper (36%)

The above strategy of biasing the random selection can be implemented as
follows:

def mySelection():

 # First generate a random number in the range 0..99
 n = randrange(0, 100)

 # If the n is in range 0..29, select Scissors
 if n <= 29:
 return "Scissors"
 elif n <= 63:

Chapter 10

238

 # if n in range 30..63, select Rock
 return "Rock"
 else:
 return "Paper"

Do This: Modify your RPS program from Chapter 7 to use this strategy. Play
the game several times. Does it perform much better that the previous
version? You will have to test this by collecting data from both versions
against several people (make sure they are novices!).

Another strategy that people use is based upon the following observation:

After many rounds, people tend to make the move that would have beaten
their own previous move.

That is, if say a player picks Paper. Their next pick will be Scissors. A
computer program or a player playing against this player should then pick
Rock to beat Scissors. Since the relationship between the choices is cyclical
the strategy can be implemented by picking the thing that beats the opponent’s
pervious move beats. Paper beats Rock. Therefore since the player’s previous
move was Paper, your program can pick Rock in anticipation of the player’s
pick of Scissors. Try to think over this carefully and make sure your head is
not spinning by the end of it. If a player can spot this they can use this as a
winning strategy. We will leave the implementation the of last strategy as an
exercise. The exercises also suggest another strategy.

The point of the above examples is that using strategies in your programs you
can make your programs smarter or more intelligent. Deliberately, we have
started to use the term intelligence a little more loosely than what Alan Turing
implied in his famous essay. Many people would argue that these programs
are not intelligent in the ultimate sense of the word. We agree. However,
writing smarter programs is a natural activity. If the programs incorporate
strategies or heuristics that people would use when they are doing the same
activity, then the programs have some form of artificial intelligence in them.
Even if the strategy used by the program is nothing like what people would
use, but it would make the program smarter or better, we would call it

Artificial Intelligence

239

artificial intelligence. Many people would disagree with this latter claim. To
some, the quest for figuring out intelligence is limited to the understanding of
intelligence in humans (and other animals). In AI both points of view are quite
prevalent and make for some passionate debates among scholars.

Learning

Here we will give you an overview of machine learning, introduce you to the
idea of computational neural networks, and then show you how using the
Myro modules for neural networks, you can design a learning program for
your Scribbler robot to learn how to avoid obstacles. Yet to be written…

Discussion

The very idea of considering a computer as an intelligent device has its
foundations in the general purpose nature of computers. By changing the
program the same computer can be made to behave in many different ways.
At the core of it a computer is just a symbol manipulator: manipulating
encodings for numbers, or letters, or images, etc. It is postulated that the
human brain is also a symbol manipulator. The foundations of AI lie in the
fact that most intelligent systems are physical symbol systems and since a
computer is a general purpose symbol manipulator, it can be used for studying
or simulating intelligence.

Myro Review

There were no new Myro features introduced in this chapter. Actually, when
the chapter is complete it will have Myro primitives for neural nets/connx
described here.

Python review

No new Python features were introduced in this chapter.

Chapter 10

240

Exercises

1. Read Alan Turing’s paper Computing Machinery and Intelligence. You can
easily find a copy of it by searching on the web.

2. More to come…

