
19

Personal
Robots

Every Pleo is autonomous. Yes, each one begins life as a newly-hatched baby
Camarasaurus, but that's where predictability ends and individuality begins.
Like any creature, Pleo feels hunger and fatigue - offset by powerful urges to
explore and be nurtured. He'll graze, nap and toddle about on his own -when
he feels like it! Pleo dinosaur can change his mind and his mood, just as you
do.
From: www.pleoworld.com

Chapter 2

20

Most people associate the personal computer (aka the PC) revolution with the
1980’s but the idea of a personal computer has been around almost as long as
computers themselves. Today, on most college campuses, there are more
personal computers than people. The goal of One Laptop Per Child (OLPC)
Project is to “provide children around the world with new opportunities to
explore, experiment, and express themselves” (see www.laptop.org). Personal
robots, similarly, were conceived several decades ago. However, the personal
robot ‘revolution’ is still in its infancy. The picture above shows the Pleo
robots that are designed to emulate
behaviors of an infant Camarasaurus. The
Pleos are marketed mainly as toys or as
mechatronic “pets”. Robots these days are
being used in a variety of situations to
perform a diverse range of tasks: like
mowing a lawn; vacuuming or scrubbing a
floor; entertainment; as companions for
elders; etc. The range of applications for
robots today is limited only by our
imagination! As an example, scientists in
Japan have developed a baby seal robot
(shown here) that is being used for
therapeutic purposes for nursing home
patients.

Your Scribbler robot is your personal robot. In this case it is being used as an
educational robot to learn about robots and computing. As you have already
seen, your Scribbler is a rover, a robot that moves around. Such robots have
become more prevalent in the last few years and represent a new dimension of
robot applications. Roaming robots have been used for mail delivery in large
offices and as vacuum cleaners in homes. Robots vary in the ways in which
they move about: they can roll about like small vehicles (like the lawn mower,
Roomba, Scribbler, etc.), or even ambulate on two, three, or more legs (e.g.
Pleo). The Scribbler robot moves on three wheels, two of which are powered.
In this chapter, we will get to know the Scribbler in some more detail and also
learn about how to use its commands to control its behavior.

The Paro Baby Seal Robot.
Photo courtesy of National
Institute of Advanced
Industrial Science and
Technology, Japan (paro.jp).

Personal Robots

21

The Scribbler Robot: Movements

In the last chapter you were able to use the Scribbler robot through Myro to
carry out simple movements. You were able to start the Myro software,
connect to the robot, and then were able to make it beep, give it a name, and
move it around using a joystick. By inserting a pen in the pen port, the
scribbler is able to trace its path of movements on a piece of paper placed on
the ground. It would be a good idea to review all of these tasks to refresh your
memory before proceeding to look at some more details about controlling the
Scribbler.

If you hold the Scribbler in your hand and take a look at it, you will notice
that it has three wheels. Two of its wheels (the big ones on either side) are
powered by motors. Go ahead turn the wheels and you will feel the resistance
of the motors. The third wheel (in the back) is a free wheel that is there for
support only. All the movements the Scribbler performs are controlled
through the two motor-driven wheels. In Myro, there are several commands to
control the movements of the robot. The command that directly controls the
two motors is the motors command:

motors(LEFT, RIGHT)

In the command above, LEFT and RIGHT can be any value in the range
[1.0...1.0] and these values control the left and right motors, respectively.
Specifying a negative value moves the motors/wheels backwards and positive
values move it forward. Thus, the command:

motors(1.0, 1.0)

will cause the robot to move forward at full speed, and the command:

motors(0.0, 1.0)

will cause the left motor to stop and the right motor to move forward at full
speed resulting in the robot turning left. Thus by giving a combination of left
and right motor values, you can control the robot's movements. Myro has also

Chapter 2

22

provided a set of often used movement commands that are easier to remember
and use. Some of them are listed below:

forward(SPEED)
backward(SPEED)
turnLeft(SPEED)
turnRight(SPEED)
stop()

Another version of these commands takes a second argument, an amount of
time in seconds:

forward(SPEED, SECONDS)
backward(SPEED, SECONDS)
turnLeft(SPEED, SECONDS)
turnRight(SPEED, SECONDS)

Providing a number for SECONDS in the commands above specifies how long
that command will be carried out. For example, if you wanted to make your
robot traverse a square path, you could issue the following sequence of
commands:

forward(1, 1)
turnLeft(1, .3)
forward(1, 1)
turnLeft(1, .3)
forward(1, 1)
turnLeft(1, .3)
forward(1, 1)
turnLeft(1, .3)

of course, whether you get a square or not will depend on how much the robot
turns in 0.3 seconds. There is no direct way to ask the robot to turn exactly 90
degrees, or to move a certain specified distance (say, 2 ½ feet). We will return
to this later.

You can also use the following movement commands to translate (i.e. move
forward or backward), or rotate (turn right or left):

Personal Robots

23

translate(SPEED)
rotate(SPEED)

Additionally, you can specify, in a single command, the amount of translation
and rotation you wish use:

move(TRANSLATE_SPEED, ROTATE_SPEED)

In all of these commands, SPEED can be a value between [-1.0...1.0].

You can probably tell from the above list that there are a number of redundant
commands (i.e. several commands can be specified to result in the same
movement). This is by design. You can pick and choose the set of movement
commands that appear most convenient to you. It would be a good idea at this
point to try out these commands on your robot.

Do This: Start Myro, connect to the robot, and try out the following
movement commands on your Scribbler:

First make sure you have sufficient room in front of the robot (place it on the
floor with a few feet of open space in front of it).

>>> motors(1, 1)
>>> motors(0, 0)

Observe the behavior of robot. Specifically, notice if it does (or doesn't) move
in a straight line after issuing the first command. You can make the robot
carry out the same behavior by issuing the following commands:

>>> move(1.0, 0.0)
>>> stop()

Go ahead and try these. The behavior should be exactly the same. Next, try
making the robot go backwards using any of the following commands:

Chapter 2

24

motors(-1, -1)
move(-1, 0)
backwards(1)

Again, notice the behavior closely. In rovers precise movement, like moving
in a straight line, is difficult to achieve. This is because two independent
motors control the robot's movements. In order to move the robot forward or
backward in a straight line, the two motors would have to issue the exact same
amount of power to both wheels. While this technically feasible, there are
several other factors than can contribute to a mismatch of wheel rotation. For
example, slight differences in the mounting of the wheels, different resistance
from the floor on either side, etc. This is not necessarily a bad or undesirable
thing in these kinds of robots.
Under similar circumstances even
people are unable to move in a
precise straight line. To illustrate
this point, you can try the
experiment shown on right.

For most people, the above
experiment will result in a variable
movement. Unless you really
concentrate hard on walking in a
straight line, you are most likely to
display similar variability as your
Scribbler. Walking in a straight
line requires constant feedback
and adjustment, something
humans are quite adept at doing.
This is hard for robots to do.
Luckily, roving does not require
such precise moments anyway.

Do This: Review all of the other movement commands listed above and try
them out on your Scribbler. Again, note the behavior of the robot from each of
these commands. In doing this activity, you may find yourself repeatedly

Do humans walk straight?

Find a long empty hallway and make
sure you have a friend with you to help
with this. Stand in the center of the
hallway and mark your spot. Looking
straight ahead, walk about 10‐15 paces
without looking at the floor. Stop,
mark your spot and see if you walked
in a straight line.

Next, go back to the original starting
spot and do the same exercise with
your eyes closed. Make sure your
friend is there to warn you in case you
are about to run into an object or a
wall. Again, note your spot and see if
you walked in a straight line.

Personal Robots

25

entering the same commands (or
simple variations). IDLE provides a
convenient way to repeat previous
commands (see the Tip in the box
on the right).

Defining New Commands

Trying out simple commands
interactively in IDLE is a nice way
to get to know your robot's basic
features. We will continue to use
this each time we want to try out
something new. However, making a
robot carry out more complex
behaviors requires several series of
commands. Having to type these
over and over interactively while
the robot is operating can get
tedious. Python provides a
convenient way to package a series
of commands into a brand new command called a function. For example, if
we wanted the Scribbler to move forward and then move backward (like a
yoyo), we can define a new command (function) called yoyo as follows:

>>> def yoyo():
 forward(1)
 backward(1)

The first line defines the name of the new command/function to be yoyo. The
lines that follow are slightly indented and contain the commands that make up
the yoyo behavior. That is, to act like a yoyo, move forward and then
backward and then stop. The indentation is important and is part of the Python
syntax. It ensures that all indented commands are part of the definition of the
new command. We will have more to say about this later.

IDLE Tip

You can repeat a previous command
by using IDLE's command history

feature:

ALT‐p retrieves previous command
ALT‐n retrieves next
(Use CTRL‐p and CTRL‐n on MACs)

Pressing ALT‐p again will give the
previous command from that one and
so on. You can also move forward in
the command history by pressing ALT‐
n repeatedly. You can also click your
cursor on any previous command and
press ALT‐ENTER to repeat that
command.

Chapter 2

26

Once the new command has been defined, you can try it by entering the
command into IDLE as shown below:

>>> yoyo()

Do This: If you have your Scribbler ready, go ahead and try out the new
definition above by first connecting to the robot, and then entering the
definition above. You will notice that as soon as you type the first line, IDLE
automatically indents the next line(s). After entering the last line hit an extra
RETURN to end the definition. This defines the new command in Python.

Observe the robot's behavior when you give it the yoyo() command. You
may need to repeat the command several times. The robot momentarily moves
and then stops. If you look closely, you will notice that it does move forward
and backwards.

In Python, you can define new functions by using the def syntax as shown
above. Note also that defining a new function doesn't mean that the
commands that make up the function get carried out. You have to explicitly
issue the command to do this. This is useful because it gives you the ability to
use the function over and over again (as you did above). Issuing the new
function like this in Python is called, invocation. Upon invocation, all the
commands that make up the function's definition are executed in the sequence
in which they are listed in the definition.

Personal Robots

27

How can we make the robot's yoyo
behavior more pronounced? That is,
make it move forward for, say 1 second,
and then backwards for 1 second, and
then stop? You can use the SECONDS
option in forward and backward
movement commands as shown below:

>>> def yoyo():
 forward(1, 1)
 backward(1, 1)
 stop()

The same behavior can also be
accomplished by using the command,
wait which is used as shown below:

wait(SECONDS)

where SECONDS specifies the amount of
time the robot waits before moving on
to the next command. In effect, the
robot continues to do whatever it had
been asked to do just prior to the wait
command for the amount of time
specified in the wait command. That is,
if the robot was asked to move forward
and then asked to wait for 1 second, it
will move forward for 1 second before
applying the command that follows the
wait. Here is the complete definition of
yoyo that uses the wait command:

And now for something
completely different

DVD Cover, from
http://Wikipedia.com

IDLE is the name of the editing and
Python shell program. When you
double‐click Start Python you are
really starting up IDLE. Python is
the name of the language that we
will be using, and gets its name
from Monty Python's Flying Circus.
IDLE supposedly stands for
Interactive DeveLopment
Environment, but do you know to
whom else it might be homage?

Chapter 2

28

>>> def yoyo():
 forward(1)
 wait(1)
 backward(1)
 wait(1)
 stop()

Do This: Go ahead and try out the
new definitions exactly as above
and issue the command to the
scribbler. What do you observe? In
both cases you should see the robot
move forward for 1 second
followed by a backward movement
for 1 second and then stop.

Adding Parameters to Commands

Take a look at the definition of the yoyo function above and you will notice
the use of parentheses, (), both when defining the function as well as when
using it. You have also used other functions earlier with parentheses in them
and probably can guess their purpose. Commands or functions can specify
certain parameters (or values) by placing them within parentheses. For
example, all of the movement commands, with the exception of stop have
one or more numbers that you specify to indicate the speed of the movement.
The number of seconds you want the robot to wait can be specified as a
parameter in the invocation of the wait command. Similarly, you could have
chosen to specify the speed of the forward and backward movement in the
yoyo command, or the amount of time to wait. Below, we show three
definitions of the yoyo command that make use of parameters:

>>> def yoyo1(speed):
 forward(speed, 1)
 backward(speed, 1)

Scribbler Tip:

Remember that your Scribbler runs on
batteries and with time they will get
drained. When the batteries start to
run low, the Scribbler may exhibit
erratic movements. Eventually it stops
responding. When the batteries start
to run low, the Scribbler's red LED light
starts to blink. This is your signal to
replace the batteries.

Personal Robots

29

>>> def yoyo2(waitTime):
 forward(1, waitTime)
 backward(1, waitTime)

>>> def yoyo3(speed, waitTime):
 forward(speed, waitTime)
 backward, waitTime)

In the first definition, yoyo1, we specify the speed of the forward or backward
movement as a parameter. Using this definition, you can control the speed of
movement with each invocation. For example, if you wanted to move at half
speed, you can issue the command:

>>> yoyo1(0.5)

Similarly, in the definition of yoyo2 we have parameterized the wait time. In
the last case, we have parameterized both speed and wait time. For example, if
we wanted the robot to move at half speed and for 1 ½ seconds each time, we
would use the command:

>>> yoyo3(0.5, 1.5)

This way, we can customize individual commands with different values
resulting in different variations on the yoyo behavior. Notice in all o fthe
definitions above that we did not have to use the stop() command at all.
Why?

Saving New Commands in Modules

As you can imagine, while working with different behaviors for the robot, you
are likely to end up with a large collection of new functions. It would make
sense then that you do not have to type in the definitions over and over again.
Python enables you to define new functions and store them in files in a folder
on your computer. Each such file is called a module and can then be easily
used over and over again. Let us illustrate this by defining two behaviors: a
parameterized yoyo behavior and a wiggle behavior that makes the robot
wiggle left and right. The two definitions are given below:

Chapter 2

30

File: moves.py
Purpose: Two useful robot commands to try out as a module.

First import myro and connect to the robot

from myro import *
init()

Define the new functions...

def yoyo(speed, waitTime):
 forward(speed)
 wait(waitTime)
 backward(speed)
 wait(waitTime)
 stop()

def wiggle(speed, waitTime):
 rotate(-speed)
 wait(waitTime)
 rotate(speed)
 wait(waitTime)
 stop()

All lines beginning with a '#' sign are called comments. These are simply
annotations that help us understand and document the programs in Python.
You can place these comments anywhere, including right after a command.
The # sign clearly marks the beginning of the comment and anything
following it on that line is not interpreted as a command by the computer.
This is quite useful and we will make liberal use of comments in all our
programs.

Notice that we have added the import and the init commands at the top. The
init command will always prompt you to enter the com-port number.

Do This: To store the yoyo and wiggle behaviors as a module in a file, you
can ask IDLE for a New Window from the File menu. Next enter the text
containing the two definitions and then save them in a file (let’s call it
moves.py) in your Myro folder (same place you have the Start Python

Personal Robots

31

icon). All Python modules end with the filename extension .py and you
should make sure they are always saved in the same folder as the Start
Python.pyw file. This will make it easy for you as well as IDLE to locate
your modules when you use them.

Once you have created the file, there are two ways you can use it. In IDLE,
just enter the command:

>>> from moves import *

and then try out any of the two commands. For example, the following shows
how to use the yoyo function after importing the moves module:

As you can see from above, accessing the commands defined in a module is
similar to accessing the capabilities of the myro module. This is a nice feature
of Python. In Python, you are encouraged to extend the capabilities of any
system by defining your own functions, storing them in modules and then
using them by importing them. Thus importing from the moves module is no
different that importing from the myro module. In general, the Python import

Chapter 2

32

command has two features that it specifies: the module name; and what is
being imported from it. The precise syntax is described below:

from <MODULE NAME> import <SOMETHING>

where <MODULE NAME> is the name of the module you are importing from, and
<SOMETHING> specifies the commands/capabilities you are importing. By
specifying a * for <SOMETHING> you are importing everything defined in the
module. We will return to this a little later in the course. But at the moment,
realize that by saying:

from myro import *

you are importing everything defined in the myro module. Everything defined
in this module is listed and documented in the Myro Reference Manual. The
nice thing that this facility provides is that you can now define your own set
of commands that extend the basic commands available in Myro to customize
the behavior of your robot. We will be making use of this over and over again
in this course.

Functions as Building Blocks

Now that you have learned how to define new commands using existing ones,
it is time to discuss a little more Python. The basic syntax for defining a
Python function takes the form:

def <FUNCTION NAME>(<PARAMETERS>):
 <SOMETHING>
 ...
 <SOMETHING>

That is, to define a new function, start by using the word def followed by the
name of the function (<FUCTION NAME>) followed by <PARAMETERS> enclosed
in parenthesis followed by a colon (:). This line is followed by the commands
that make up the function definition (<SOMETHING>...<SOMETHING>). Each
command is to be placed on a separate line, and all lines that make up the

Personal Robots

33

definition should be indented (aligned) the same amount. The number of
spaces that make up the indentation is not that important as long as they are
all the same. This may seem a bit awkward and too restricting at first, but you
will soon see the value of it. First, it makes the definition(s) more readable.
For example, look at the following definitions for the yoyo function:

def yoyo(speed, waitTime):
 forward(speed)
 wait(waitTime)
 backward(speed)
 wait(waitTime)
 stop()

def yoyo(speed, waitTime):
 forward(speed); wait(waitTime)
 backward(speed); wait(waitTime)
 stop()

The first definition will not be accepted by Python, as shown below:

It reports that there is a syntax error and it highlights the error location by
placing the thick red cursor (see the third line of the definition). This is
because Python strictly enforces the indentation rule described above. The
second definition, however, is acceptable. For two reasons: indentation is
consistent; and commands on the same line can be entered separated by a
semi-colon (;). We would recommend that you continue to enter each
command on a separate line and defer from using the semi-colon as a
separator until you are more comfortable with Python. More importantly, you

Chapter 2

34

will notice that IDLE helps you in making your indentations consistent by
automatically indenting the next line, if needed.

Another feature built into IDLE that enables readability of Python programs is
the use of color highlighting. Notice in the above examples (where we use
screen shots from IDLE) that pieces of your program appear in different
colors. For example, the word def in a function definition appears in red, the
name of your function, yoyo appears in blue. Other colors are also used in
different situations, look out for them. IDLE displays all Python words (like
def) in red and all names defined by you (like yoyo) in blue.

The idea of defining new functions by using existing functions is very
powerful and central to computing. By defining the function yoyo as a new
function using the existing functions (forward, backward, wait, stop))
you have abstracted a new behavior for your robot. You can define further
higher-level functions that use yoyo if you want. Thus, functions serve as
basic building blocks in defining various robot behaviors, much like the idea
of using building blocks to build bigger structures. As an example, consider
defining a new behavior for your robot: one that makes it behave like a yoyo
twice, followed by wiggling twice. You can do this by defining a new
function as follows:

>>> def dance():
 yoyo(0.5, 0.5)
 yoyo(0.5, 0.5)
 wiggle(0.5, 1)
 wiggle(0.5, 1)

>>> dance()

Do This: Go ahead and add the dance function to your moves.py module.
Try the dance command on the robot. Now you have a very simple behavior
that makes the robot do a little shuffle dance.

Personal Robots

35

Guided by Automated Controls

Earlier we agreed that a robot is a “mechanism guided by automated
controls”. You can see that by defining functions that carry out more complex
movements, you can create modules for many different kinds of behaviors.
The modules make up the programs you write, and when they are invoked on
the robot, the robot carries out the specified behavior. This is the beginning of
being able to define automated controls for a robot. As you learn more about
the robot’s capabilities and how to access them via functions, you can design
and define many kinds of automated behaviors.

Summary

In this chapter, you have learned several commands that make a robot move in
different ways. You also learned how to define new commands by defining
new Python functions. Functions serve as basic building blocks in computing
and defining new and more complex robot behaviors. Python has specific
syntax rules for writing definitions. You also learned how to save all your
function definitions in a file and then using them as a module by importing
from it. While you have learned some very simple robot commands, you have
also learned some important concepts in computing that enable the building of
more complex behaviors. While the concepts themselves are simple enough,
they represent a very powerful and fundamental mechanism employed in
almost all software development. In later chapters, we will provide more
details about writing functions and also how to structure parameters that
customize individual function invocations. Make sure you do some or all of
the exercises in this chapter to review these concepts.

Myro Review

backward(SPEED)
Move backwards at SPEED (value in the range -1.0…1.0).

Chapter 2

36

backward(SPEED,SECONDS)
Move backwards at SPEED (value in the range -1.0…1.0) for a time given in
SECONDS, then stop.

forward(SPEED)
Move forward at SPEED (value in the range -1.0..1.0).

forward(SPEED,TIME)
Move forward at SPEED (value in the range -1.0…1.0) for a time given in
seconds, then stop.

motors(LEFT,RIGHT)
Turn the left motor at LEFT speed and right motor at RIGHT speed (value in the
range -1.0…1.0).

move(TRANSLATE, ROTATE)
Move at the TRANSLATE and ROTATE speeds (value in the range -1.0…1.0).

rotate(SPEED)
Rotates at SPEED (value in the range -1.0…1.0). Negative values rotate right
(clockwise) and positive values rotate left (counter-clockwise).

stop()
Stops the robot.

translate(SPEED)
Move in a straight line at SPEED (value in the range -1.0…1.0). Negative
values specify backward movement and positive values specify forward
movement.

turnLeft(SPEED)
Turn left at SPEED (value in the range -1.0…1.0)

turnLeft(SPEED,SECONDS)
Turn left at SPEED (value in the range -1.0..1.0) for a time given in seconds,
then stops.

Personal Robots

37

turnRight(SPEED)
Turn right at SPEED (value in the range -1.0..1.0)

turnRight(SPEED,SECONDS)
Turn right at SPEED (value in the range -1.0..1.0) for a time given in seconds,
then stops.

wait(TIME)
Pause for the given amount of TIME seconds. TIME can be a decimal number.

Python Review

def <FUNCTION NAME>(<PARAMETERS>):
 <SOMETHING>
 ...
 <SOMETHING>
Defines a new function named <FUNCTION NAME>. A function name should
always begin with a letter and can be followed by any sequence of letters,
numbers, or underscores (_), and not contain any spaces. Try to choose names
that appropriately describe the function being defined.

Exercises

1. Compare the robot's movements in the commands turnLeft(1),
turnRight(1) and rotate(1) and rotate(-1). Closely observe the robot's
behavior and then also try the motor commands:

>>> motors(-0.5, 0.5)
>>> motors(0.5, -0.5)
>>> motors(0, 0.5)
>>> motors(0.5, 0)

Do you notice any difference in the turning behaviors? The rotate
commands make the robot turn with a radius equivalent to the width of the
robot (distance between the two left and right wheels). The turn command
causes the robot to spin in the same place.

Chapter 2

38

2. Insert a pen in the scribbler's pen port and then issue it command to go
forward for 1 or more seconds and then backwards for the same amount. Does
the robot travel the same distance? Does it traverse the same trajectory?
Record your observations.

3. Suppose you wanted to turn/spin your robot a given amount, say 90
degrees. Before you try this on your robot, do it yourself. That is, stand in one
spot, draw a line dividing your two feet, and then turn 90 degrees. If you have
no way of measuring, your turns will only be approximate. You can study the
behavior of your robot similarly by issuing it turn/spin commands and making
them wait a certain amount. Try and estimate the wait time required to turn 90
degrees (you will have to fix the speed) and write a function to turn that
amount. Using this function, write a behavior for your robot to transcribe a
square on the floor (you can insert a pen to see how the square turns out).

4. Choreograph a simple dance routine for your robot and define functions to
carry it out. Make sure you divide the tasks into re-usable moves and as much
as possible parameterize the moves so they can be used in customized ways in
different steps. Use the building block idea to build more and more complex
series of dance moves. Make sure the routine lasts for at least several seconds
and it includes at least two repetitions of the entire sequence. You may also
make use of the beep command you learned from the last section to
incorporate some sounds in your choreography.

5. Lawn mower robots and even vacuuming robots can use specific
choreographed movements to ensure that they provide full coverage of the
area to be serviced. Assuming that the area to be mowed or cleaned is
rectangular and without any obstructions, can you design a behavior for your
Scribbler to provide full coverage of the area? Describe it in writing. [Hint:
Think about how you would mow/vacuum yourself.]

