
39

Building
Brains

What a splendid head, yet no brain.

Aesop (620 BC‐560 BC)

Chapter 3

40

If you think of your robot as a creature that acts in the world, then by
programming it, you are essentially building the creature's brain. The power
of computers lies in the fact that the same computer or the robot can be
supplied a different program or brain to make it behave like a different
creature. For example, a program like Firefox or Explorer makes your
computer behave like a web browser. But switching to your Media Player, the
computer behaves as a DVD or a CD player. Similarly, your robot will behave
differently depending upon the instructions in the program that you have
requested to run on it. In this chapter we will learn about the structure of
Python programs and how you can organize different robot behaviors as
programs.

The world of robots and computers, as you have seen so far is intricately
connected. You have been using a computer to connect to your robot and then
controlling it by giving it commands. Most of the commands you have used so
far come from the Myro library which is specially written for easily
controlling robots. The programming language we are using to do the robot
programming is Python. Python is a general purpose programming language.
By that we mean that one can use Python to write software to control the
computer or another device like a robot through that computer. Thus, by
learning to write robot programs you are also learning how to program
computers. Our journey into the world of robots is therefore intricately tied up
with the world of computers and computing. We will continue to interweave
concepts related to robots and computers throughout this journey. In this
chapter, we will learn more about robot and computer programs and their
structure.

Basic Structure of a Robot Brain

The basic structure of a Python program (or a robot brain) is shown below:

def main():
 <do something>
 <do something>
 ...

Building Robot Brains

41

This is essentially the same as defining a new function. In fact, here, we are
adopting a convention that all our programs that represent robot brains will be
called main. In general, the structure of your robot programs will be as shown
below (we have provided line numbers so we can refer to them):

Line 1: from myro import *
Line 2: init()

Line 3: <any other imports>
Line 4: <function definitions>
Line 5: def main():
Line 6: <do something>
Line 7: <do something>
Line 8: ...

Line 9: main()

Every robot brain program will begin with the first two lines (Line 1 and
Line 2). These, as you have already seen, import the Myro library and
establish a connection with the robot. In case you are using any other libraries,
you will then import them (this is shown in Line 3). This is followed by the
definitions of functions (Line 4), and then the definition of the function,
main. Finally, the last line (Line 9) is an invocation of the function main.
This is placed so that when you load this program into the Python Shell the
program will start executing. In order to illustrate this, let us write a robot
program that makes it do a short dance using the yoyo and wiggle
movements defined in the last chapter.

File: dance.py
Purpose: A simple dance routine

First import myro and connect to the robot

from myro import *
initialize("com5")

Define the new functions...

def yoyo(speed, waitTime):

Chapter 3

42

 forward(speed, waitTime)
 backward(speed, waitTime)

def wiggle(speed, waitTime):
 motors(-speed, speed)
 wait(waitTime)
 motors(speed, -speed)
 wait(waitTime)
 stop()

The main dance program
def main():
 print "Running the dance routine..."
 yoyo(0.5, 0.5)
 wiggle(0.5, 0.5)
 yoyo(1, 1)
 wiggle(1, 1)
 print "...Done"

main()

We have used a new Python command in the definition of the main function:
the print command. This command will print out the text enclosed in double
quotes (") when you run the program. This program is not much different
from the dance function defined in the previous chapter except we are using a
spin motion to wiggle. However, instead of naming the function dance we are
calling it main. As we mentioned earlier, this is just a naming convention that
we are adopting that makes it easy to identify the main program in a program
file.

Do This: In order to run this program on the robot, you can start IDLE, create
a new window, enter the program in it, save it as a file (dance.py) and then
select the Run Module feature in the window's Run menu. Alternately, to run
this program, you can enter the following command in the Python Shell:

>>> from dance import *

This is essentially equivalent to the Run Module option described above.
When you run the program you will notice that the robot carries out the dance

Building Robot Brains

43

routine specified in the main program. Also notice the two messages printed
in the IDLE window. These are the results of the print command. print is a
very useful command in Python and can be used to output essentially anything
you ask it to. While you are in this session, go ahead and change the print
command to the following:

speak("Running the dance routine")

speak is a Myro command that enables speech output from your computer.
Go ahead and change the other print command also to the speak command
and try your program. Once done, enter some other speak commands on the
IDLE prompt. For example:

speak("Dude! Pardon me, would you have any Grey Poupon?")

The speech facility is built into most computers these days. Later we will see
how you can find out what other voices are available and also how to change
to them.

Speaking Pythonese

We have launched you into the world of computers and robots without really
giving you a formal introduction to the Python language. In this section, we
provide more details about the language. What you know about Python so far
is that it is needed to control the robot. The robot commands you type are
integrated into Python by way of the Myro library. Python comes with several
other useful libraries or modules that we will try and learn in this course. If
you need to access the commands provided by a library, all you have to do is
import them.

The libraries themselves are largely made up of sets of functions (they can
contain other entities but more on that later). Functions provide the basic
building blocks for any program. Typically, a programming language (and
Python is no exception) includes a set of pre-defined functions and a
mechanism for defining additional functions. In the case of Python, it is the

Chapter 3

44

def construct. You have already seen several examples of function definitions
and indeed have written some of your own by now. In the def construct, when
defining a new function, you have to give the new function a name. Names
are a critical component of programming and Python has rules about what
forms a name.

What’s in a name?

A name in Python must begin with either an alphabetic letter (a-z or A-Z) or
the underscore (i.e. _) and can be followed by any sequence of letters, digits,
or underscore letters. For example,

iRobot
myRobot
jitterBug
jitterBug2
my2cents
my_2_cents

are all examples of valid Python names. Additionally, another important part
of the syntax of names is that Python is case sensitive. That is the names
myRobot and MyRobot and myrobot are distinct names as far as Python is
concerned. Once you name something a particular way, you have to
consistently use that exact case and spelling from then on. Well, so much
about the syntax of names, the bigger question you may be asking is what
kinds of things can (or should) be named?'

So far, you have seen that names can be used to represent functions. That is,
what a robot does each time you use a function name (like yoyo) is specified
in the definition of that function. Thus, by giving functions a name you have a
way of defining new functions. Names can also be used to represent other
things in a program. For instance, you may want to represent a quantity, like
speed or time by a name. In fact, you did so in defining the function yoyo
which is also shown below:

def yoyo(speed, waitTime):

Building Robot Brains

45

 forward(speed, waitTime)
 backward(speed, waitTime)

Functions can take parameters that help customize what they do. In the above
example, you can issue the following two commands:

>>> yoyo(0.8, 2.5)
>>> yoyo(0.3, 1.5)

The first command is asking to perform the yoyo behavior at speed 0.8 for 2.5
seconds where as the second one is specifying 0.3 and 1.5 for speed and time,
respectively. Thus, by parameterizing the function with those two values, you
are able to produce similar but varying outcomes. This idea is similar to the
idea of mathematical functions: sine(x) for example, computes the sine of
whatever value you supply for x. However, there has to be a way of defining
the function in the first place that makes it independent of specific parameter
values. That is where names come in. In the definition of the function yoyo
you have named two parameters (the order you list them is important): speed
and waitTime. Then you have used those names to specify the behavior that
makes up that function. That is the commands forward, and backward use the
names speed and waitTime to specify whatever the speed and wait times are
included in the function invocation. Thus, the names speed and waitTime
represent or designate specific values in this Python program.

Names in Python can represent functions as well as values. What names you
use is entirely up to you. It is a good idea to pick names that are easy to read,
type, and also appropriately designate the entity they represent. What name
you pick to designate a function or value in your program is very important,
for you. For example, it would make sense if you named a function
turnRight so that when invoked, the robot turned right. It would not make
any sense if the robot actually turned left instead, or worse yet, did the
equivalent of the yoyo dance. But maintaining this kind of semantic
consistency is entirely up to you.

Chapter 3

46

Values

In the last section we saw that names can designate functions as well as
values. While the importance of naming functions may be obvious to you by
now, designating values by names is an even more important feature of
programming. By naming values, we can create names that represent specific
values, like the speed of a robot, or the average high temperature in the month
of December on top of the Materhorn in Switzerland, or the current value of
the Dow Jones Stock Index, or the name of your robot, etc. Names that
designate values are also called variables. Python provides a simple
mechanism for designating values with names:

speed = 0.75
aveHighTemp = 37
DowIndex = 12548.30
myFavoriteRobot = "C3PO"

Values can be numbers or strings (anything enclosed in double-quotes, ").
The above are examples of assignment statements in Python. The exact syntax
of an assignment statement is given below:

<variable name> = <expression>

You should read the above statement as: Let the variable named by
<variable name> be assigned the value that is the result of calculating the
expression <expression>. So what is an <expression>? Here are some
examples:

>>> 5
5
>>> 5 + 3
8
>>> 3 * 4
12
>>> 3.2 + 4.7
7.9
>>> 10 / 2
5

Building Robot Brains

47

What you type at the Python prompt (>>>) is actually called an expression.
The simplest expression you can type is a number (as shown above). A
number evaluates to itself. That is, a 5 is a 5, as it should be! And 5 + 3 is 8.
As you can see when you enter an expression, Python evaluates it and then
outputs the result. Also, addition (+), subtraction (-), multiplication (*), and
division (/) can be used on numbers to form expressions that involve
numbers.

You may have also noticed that numbers can be written as whole numbers (3,
5, 10, 1655673, etc) or with decimal points (3.2, 0.5, etc) in them. Python (and
most computer languages) distinguishes between them. Whole numbers are
called integers and those with decimal points in them are called floating point
numbers. While the arithmetic operations are defined on both kinds of
numbers, there are some differences you should be aware of. Look at the
examples below:

>>> 10.0/3.0
3.3333333333333335
>>> 10/3
3
>>> 1/2
0
>>> 1.0/2
0.5

When you divide a floating point number by another floating point number,
you get a floating point result. However, when you divide an integer by
another integer, you get an integer result. Thus, in the examples above, you
get the result 3.3333333333333335 when you divide 10.0 by 3.0, but you get
3 when you divide 10 by 3. Knowing this, the result of dividing 1 by 2 (see
above) is zero (0) should not be surprising. That is, while the division
operation looks the same (/), it treats integers differently than floating point
values. However, if at least one of the numbers in an arithmetic operation is a
floating point number, Python will give you a floating point result (see last
example above). You should keep this in mind. More on numbers later, before
we get back to robots, let us quickly introduce you to strings.

Chapter 3

48

Computers came to be called so because they excelled in doing calculations.
However, these days, computers are capable of manipulating any kind of
entity: text, images, sounds, etc. Text is made of letters or characters and
strings are simply sequences of characters. Python requires that strings be
written enclosed in quotes: which could be single ('I am a string'), double
("Me too!"), or even triple quotes ('''I'm a string as well!''').
Treating a string as a value is a powerful feature of Python. Python also
provides some operations on strings using which you can write some useful
string expressions. Here are some examples:

>>> mySchool = "Bryn Mawr College"
>>> yourSchool = "Georgia Institute of Technology"
>>> print mySchool
Bryn Mawr College

>>> print yourSchool
Georgia Institute of Technology

>>> print mySchool, yourSchool
Bryn Mawr College Georgia Institute of Technology

>>> yourSchool+mySchool
'Georgia Institute of TechnologyBryn Mawr College'

>>> print yourSchool+mySchool
Georgia Institute of TechnologyBryn Mawr College

Pay special attention to the last two examples. The operation + is defined on
strings and it results in concatenating the two strings. The print command is
followed by zero or more Python expressions, separated by commas. print
evaluates all the expressions and prints out the results on the screen. As you
have also seen before, this is a convenient way to print out results or messages
from your program.

Building Robot Brains

49

A Calculating Program

Ok, set your robot aside for just a few more minutes. You have now also
learned enough Python to write programs that perform simple calculations.
Here is a simple problem:

On January 1, 2008 the population of the world was estimated at
approximately 6.650 billion people. It is predicted that at current rates of
population growth, we will have over 9 billion people by the year 2050. A
gross estimate of population growth puts the annual increase at +1.14% (it
has been as high as +2.2% in the past). Given this data, can you estimate by
how much the world’s population will increase in this year (2008)? Also, by
how much will it increase each day?

In order to answer the questions, all you have to do is compute 1.14% of
6.650 billion to get the increase in population this year. If you divide that
number by 365 (the number of days in 2009) you will get average daily
increase. You can just use a calculator to do these simple calculations. You
can also use Python to do this in two ways. You can use it as a calculator as
shown below:

>>> 6650000000*1.14/100.0
75810000.0

>>> 75810000.0/365.0
207698.63013698629

That is, in this year there will be an increase of 75.81 million in the world’s
population which implies an average daily increase of over 207 thousand
people). So now you know the answer!

Also, let us try and write a program to do the above calculations. A program
to do the calculation is obviously going to be a bit of overkill. Why do all the
extra work when we already know the answer? Small steps are needed to get
to higher places. So let’s indulge and see how you would write a Python
program to do this. Below, we give you one version:

Chapter 3

50

#File: worldPop.py
Purpose:
Estimate the world population growth in a year and
also per day.
Given that on Jnauray 1, 2008 the world's population was
estimated at 6,650,000,000 and the estimated growth is
at the rate of +1.14%

def main():
 population = 6650000000
 growthRate = 1.14/100.0

 growthInOneYear = population * growthRate
 growthInADay = growthInOneYear / 365

 print "World population on January 1, 2008 is", population
 print "By Jan. 1, 2009, it will grow by", growthInOneYear
 print "An average daily increase of", growthInADay

main()

The program follows the same structure and conventions we discussed above.
In this program, we are not using any libraries (we do not need any). We have
defined variables with names population, and growthRate to designate the
values given in the problem description. We also defined the variables
grothInOneYear and growthInADay and use them to designate the results
of the calculations. First, in the main program we assign the values given,
followed by performing the calculation. Finally, we use the print commands
to print out the result of the computations.

Do This: Start Python, enter the program, and run it (just as you would run
your robot programs) and observe the results. Voila! You are now well on
your way to also learning the basic techniques in computing! In this simple
program, we did not import anything, nor did we feel the need to define any
functions. But this was a trivial program. However, it should serve to
convince you that writing programs to do computation is essentially the same
as controlling a robot.

Building Robot Brains

51

Using Input

The program we wrote above uses specific
values of the world’s population and the rate
of growth. Thus, this program solves only
one specific problem for the given values.
What if we wanted to calculate the results for
a different growth rate? Or even a different
estimate of the population? What if we
wanted to try out the program for varying
quantities of both? Such a program would be
much more useful and could be used over
and over again. Notice that the program
begins by assigning specific values to the
two variables:

 population = 6650000000
 growthRate = 1.14/100.0

One thing you could do is simply modify
those two lines to reflect the different values.
However, typical programs are much more
complicated than this one and it may require
a number of different values for solving a
problem. When programs get larger, it is not
a good idea to modify them for every specific
problem instance but it is desirable to make
them more useful for all problem instances.
One way you can achieve this is by using the
input facilities of Python. All computer programs typically take some input,
do some computation (or something), and then produce some output. Python
has a simple input command that can be used to rewrite the program above as
follows:

The Energy Problem

The root cause of world
energy problems is growing
world population and energy
consumption per capita.

How many people can the
earth support? Most experts
estimate the limit for long‐
term sustainability to be
between 4 and 16 billion.

From: Science, Policy & The Pursuit
of Sustainability, Edited by Bent,
Orr,and Baker. Illus. by Shetter.
Island Press, 2002.

Chapter 3

52

#File: worldPop.py
Purpose:
Estimate the world population growth in a year and
also per day.
Given that on Jnauray 1, 2008 the world's population was
estimated at 6,650,000,000 and the estimated growth is
at the rate of +1.14%

def main():
 # print out the preamble

 print "This program computes population growth figures."

 # Input the values
 population = input("Enter current world population: ")
 growthRate = input("Enter the growth rate: ")/100.0

 # Compute the results
 growthInOneYear = population * growthRate
 growthInADay = growthInOneYear / 365

 # output results
 print "World population today is", population
 print "In one year, it will grow by", growthInOneYear
 print "An average daily increase of", growthInADay

main()

Read the program above carefully. Notice that we have added additional
comments as well as print statements. This improves the overall readability as
well as the interaction of this program. Notice the use of the input statements
above. The basic syntax of input is shown below:

<variable name> = input(<some prompt string>)

That is, the input is a function whose parameter is a string and the value it
returns is the value of the expression that will be entered by the user. When
executed, the computer will print out the prompt and wait for the user to enter
a Python expression. The user can enter whatever expression in response to

Building Robot Brains

53

the prompt and then hit the RETURN or ENTER key. The expression is then
evaluated by Python and the resulting value is returned by the input function.
That value is then assigned to the variable <variable name>. The statement
above uses the same syntax as the assignment statement described above.
Python has made obtaining input from a user easy by defining input as a
function. Now, look at the use of the input function in the program above.
With this modification, we now have a more general program which can be
run again and again. Below, we show two sample runs:

Notice how you can re-run the program by just typing the name of the
main()function. There are other ways of obtaining input in Python. We will
see those a little later.

Robot Brains

Writing programs to control your robot is therefore no different from writing a
program to perform a computation. They both follow the same basic structure.
The only difference is that all robot programs you will write will make use of
the Myro library. There will be several robot programs that will require you to
obtain input from the user (see exercises below). You can then make use of
the input function as described above.

One characteristic that will distinguish robot programs from those that just do
computations is in the amount of time it will take to run a program. Typically,
a program that only performs some computation will terminate as soon as the

Chapter 3

54

computation is completed. However, it will be the case that most of the time
your robot program will require the robot to perform some task over and over
again. Here then, is an interesting question to ask:

Question How much time would it take for a vacuuming robot to vacuum a
16ft X 12ft room?

Seemingly trivial question but if you think about it a little more, you may
reveal some deeper issues. If the room does not have any obstacles in it (i.e.
an empty room), the robot may plan to vacuum the room by starting from one
corner and then going along the entire length of the long wall, then turning
around slightly away from the wall, and traveling to the other end. In this
manner, it will ultimately reach the other side of the room in a systematic way
and then it could stop when it reaches the last corner. This is similar to the
way one would mow a flat oblong lawn, or even harvest a field of crop, or re-
ice an ice hockey rink using a Zamboni machine. To answer the question
posed above all you have to do is calculate the total distance travelled and the
average speed of the vacuum robot and use the two to compute the estimated
time it would take. However, what if the room has furniture and other objects
in it?

You might try and modify the approach for vacuuming outlined above but
then there would be no guarantee that the floor would be completely
vacuumed. You might be tempted to redesign the vacuuming strategy to allow
for random movements and then estimate (based on average speed of the
robot) that after some generous amount of time, you can be assured that the
room would be completely cleaned. It is well known (and we will see this
more formally in a later chapter) that random movements over a long period
of time do end up providing uniform and almost complete coverage.
Inherently this also implies that the same spot may very well end up being
vacuumed several times (which is not necessarily a bad thing!). This is similar
to the thinking that a herd of sheep, if left grazing on a hill, will result, after a
period of time, in a nearly uniform grass height (think of the beautiful hills in
Wales).

Building Robot Brains

55

On the more practical side, iRobot's Roomba robot uses a more advanced
strategy (though it is time based) to ensure that it provides complete coverage.
A more interesting (and important) question one could ask would be:

Question: How does a vacuuming robot know that it is done cleaning the
room?

Most robots are programmed to either detect certain terminating situations or
are run based on time. For example, run around for 60 minutes and then stop.
Detecting situations is a little difficult and we will return to that in the next
chapter.

So far, you have programmed very simple robot behaviors. Each behavior
which is defined by a function, when invoked, makes the robot do something
for a fixed amount of time. For example, the yoyo behavior from the last
chapter when invoked as:

>>> yoyo(0.5, 1)

would cause the robot to do something for about 2 seconds (1 second to go
forward and then 1 second to move backward). In general, the time spent
carrying out the yoyo behavior will depend upon the value of the second
parameter supplied to the function. Thus if the invocation was:

>>> yoyo(0.5, 5.5)

the robot would move for a total of 11 seconds. Similarly, the dance behavior
defined in the previous chapter will last a total of six seconds. Thus, the total
behavior of a robot is directly dependent upon the time it would take to
execute all the commands that make up the behavior. Knowing how long a
behavior will take can help in pre-programming the total amount of time the
overall behavior could last. For example, if you wanted the robot to perform
the dance moves for 60 seconds, you can repeat the dance behavior ten times.
You can do this by simply issuing the dance command 10 times. But that gets
tedious for us to have to repeat the same commands so many times.
Computers are designed to do repetitious tasks. In fact, repetition is one of the

Chapter 3

56

key concepts in computing and all programming languages, including Python,
provide simple ways to specify repetitions of all kinds.

Doing Repetition in Python

If you wanted to repeat the dance behavior 10 times, all you have to do is:

for i in range(10):
 dance()

This is a new statement in Python: the for-statement. It is also called a loop
statement or simply a loop. It is a way of repeating something a fixed number
of times. The basic syntax of a for-loop in Python is:

for <variable> in <sequence>:
 <do something>
 <do something>
 ...

The loop specification begins with the keyword for which is followed by a
<variable> and then the keyword in and a <sequence> followed by a colon
(:). This line sets up the number of times the repetition will be repeated. What
follows is a set of statements, indented (again, indentation is important), that
are called a block that forms the body of the loop (stuff that is repeated).

When executed, the <variable> (which is called a loop index variable) is
assigned successive values in the <sequence> and for each of those values, the
statements in the body of the loop are executed. A <sequence> in Python is a
list of values. Lists are central to Python and we will see several examples of
lists later. For now, look at the dance example above and notice that we have
used the function range(10) to specify the sequence. To see what this
function does you can start IDLE and enter it as an expression:

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Building Robot Brains

57

The result of entering the range(10) is a sequence (a list) of ten numbers
0..9. Notice how range returns a sequence of values starting from 0 all the
way up to, but including, 10. Thus, the variable i in the loop:

for i in range(10):
 dance()

will take on the values 0 through 9 and for each of those values it will execute
the dance() command.

Do This: Let us try this out on the robot. Modify the robot program from the
start of this chapter to include the dance function and then write a main
program to use the loop above.

File: dance.py
Purpose: A simple dance routine

First import myro and connect to the robot

from myro import *
init()

Define the new functions...

def yoyo(speed, waitTime):
 forward(speed, waitTime)
 backward(speed, waitTime)
 stop()

def wiggle(speed, waitTime):
 motors(-speed, speed)
 wait(waitTime)
 motors(speed, -speed)
 wait(waitTime)
 stop()

def dance():
 yoyo(0.5, 0.5)
 yoyo(0.5, 0.5)
 wiggle(0.5, 1)
 wiggle(0.5, 1)

Chapter 3

58

The main dance program
def main():
 print "Running the dance routine..."

 for danceStep in range(10):
 dance()

 print "...Done"

main()

Notice that we have used
danceStep (a more meaningful
name than i) to represent the
loop index variable. When you
run this program, the robot
should perform the dance routine
ten times. Modify the value
specified in the range command
to try out some more steps. If you end up specifying a really large value,
remember that for each value of danceStep the robot will do something for 6
seconds. Thus, if you specified 100 repetitions, the robot will run for 10
minutes.

In addition to repeating by counting, you can also specify repetition using
time. For example, if you wanted the robot (or the computer) to do something
for 30 seconds. You can write the following command to specify a repetition
based on time:

while timeRemaining(10):
 <do something>
 <do something>
 ...

The above commands will be repeated for 10 seconds. Thus, if you wanted
the computer to say “Doh!” for 5 seconds, you can write:

IDLE Tip

You can stop a program at any time by
hitting the CTRL‐C keys (pronounced as
Control‐see). That is, pressing the
CTRL‐key and then at the same time
pressing the c‐key.

In the case of a robot program this will
also stop the robot.

Building Robot Brains

59

while timeRemaining(5):
 speak("Doh!", 0)

In writing robot programs there will also be times when you just want the
robot to keep doing its behaviors forever! While technically by forever we do
mean eternity in reality what is likely to happen is either it runs out of
batteries, or you decide to stop it (by hitting CTRL-C). The Python command
to specify this uses a different loop statement, called a while-loop that can be
written as:

while True:
 <do something>
 <do something>
 ...

True is also a value in Python (along with False) about which we will learn
more a little later. For now, it would suffice for us to say that the above loop
is specifying that the body of the loop be executed forever!

Do This: Modify the dance.py program to use each of the while-loops
instead of the for-loop. In the last case (while TRUE:) remember to use
CTRL-C to stop the repetitions (and the robot).

As we mentioned above, repetition is one of the key concepts in computing.
For example, we can use repetition to predict the world population in ten
years by repeatedly computing the values for each year:

for year in range(10):
 population = population * (1 + growthRate)

That is, repeatedly add the increase in population, based on growth rate, ten
times.

Do This: Modify the worldPop.py program to input the current population,
growth rate, and the number of years to project ahead and compute the
resulting total population. Run your program on several different values

Chapter 3

60

(Google: “world population growth” to get latest numbers). Can you estimate
when the world population will become 9 billion?

Summary

This chapter introduced the basic structure of Python (and robot) programs.
We also learned about names and values in Python. Names can be used to
designate functions and values. The latter are also called variables. Python
provides several different types of values: integers, floating point numbers,
strings, and also boolean values (True and False). Most values have built-in
operations (like addition, subtration, etc.) that perform calculations on them.
Also, one can form sequences of values using lists. Python provides simple
built-in facilities for obtaining input from the user. All of these enable us to
write not only robot programs but also programs that perform any kind of
computation. Repetition is a central and perhaps the most useful concept in
computing. In Python you can specify repetition using either a for-loop or a
while-loop. The latter are useful in writing general robot brain programs. In
later chapters, we will learn how to write more sophisticated robot behaviors.

Myro Review

speak(<something>)
The computer converts the text in <something> to speech and speaks it out.
<something> is also simultaneously printed on the screen. Speech generation
is done synchronously. That is, anything following the speak command is
done only after the entire thing is spoken.

speak(<something>, 0)
The computer converts the text in <something> to speech and speaks it out.
<something> is also simultaneously printed on the screen. Speech generation
is done asynchronously. That is, execution of subsequent commands can be
done prior to the text being spoken.

timeRemaining(<seconds>)
This is used to specify timed repetitions in a while-loop (see below).

Building Robot Brains

61

Python Review

Values
Values in Python can be numbers (integers or floating point numbers) or
strings. Each type of value can be used in an expression by itself or using a
combination of operations defined for that type (for example, +, -, *, /, % for
numbers). Strings are considered sequences of characters (or letters).

Names
A name in Python must begin with either an alphabetic letter (a-z or A-Z) or
the underscore (i.e. _) and can be followed by any sequence of letters, digits,
or underscore letters.

input(<prompt string>)

This function prints out <prompt string> in the IDLE window and waits for
the user to enter a Python expression. The expression is evaluated and its
result is returned as a value of the input function.

from myro import *
initialize("comX")

<any other imports>
<function definitions>
def main():
 <do something>
 <do something>
 ...

main()
This is the basic structure of a robot control program in Python. Without the
first two lines, it is the basic structure of all Python programs.

print <expression1>, <expression2>, ...
Prints out the result of all the expressions on the screen (in the IDLE
window). Zero or more expressions can be specified. When no expression is
specified, it prints out an empty line.

Chapter 3

62

<variable name> = <expression>
This is how Python assigns values to variables. The value generated by
<expression> will become the new value of <variable name>.

range(10)
Generates a sequence, a list, of numbers from 0..9. There are other, more
general, versions of this function. These are shown below.

range(n1, n2)
Generates a list of numbers starting from n1…(n2-1). For example,
range(5, 10) will generate the list of numbers [5, 6, 7, 8, 9].

range(n1, n2, step)
Generates a list of numbers starting from n1…(n2-1) in steps of step. For
example, range(5, 10, 2) will generate the list of numbers [5, 7, 9].

Repetition

for <variable> in <sequence>:
 <do something>
 <do something>
 ...

while timeRemaining(<seconds>):
 <do something>
 <do something>
 ...

while True:
 <do something>
 <do something>
 ...

These are different ways of doing repetition in Python. The first version will
assign <variable> successive values in <sequence> and carry out the body
once for each such value. The second version will carry out the body for
<seconds> amount of time. timeRemaining is a Myro function (see above).
The last version specifies an un-ending repetition.

Building Robot Brains

63

Exercises

1. Write a Python program to convert a temperature from degrees Celsius to
degrees Fahrenheit. Here is a sample interaction with such a program:

 Enter a temperature in degrees Celsius: 5.0
 That is equivalent to 41.0 degrees Fahrenheit.

The formula to convert a temperature from Celsius to Fahrenheit is: C/5=(F-
32)/9, where C is the temperature in degrees Celsius and F is the temperature
in degrees Fahrenheit.

2. Write a Python program to convert a temperature from degrees Fahrenheit
to degrees Celsius.

3. Write a program to convert a given amount of money in US dollars to an
equivalent amount in Euros. Look up the current exchange rate on the web
(see xe.com, for example).

4. Modify the version of the dance program above that uses a for-loop to use
the following loop:

for danceStep in [1,2,3]:
 dance()

That is, you can actually use a list itself to specify the repetition (and
successive values the loop variable will take). Try it again with the lists [3,
2, 6], or [3.5, 7.2, 1.45], or [“United”, “States”, “of”,
“America”]. Also try replacing the list above with the string “ABC”.
Remember, strings are also sequences in Python. We will learn more about
lists later.

5. Run the world population program (any version from the chapter) and when
it prompts for input, try entering the following and observe the behavior of the
program. Also, given what you have learned in this chapter, try and explain
the resulting behavior.

Chapter 3

64

1. Use the values 9000000000, and 1.42 as input values as above. Except,
when it asks for various values, enter them in any order. What happens?

2. Using the same values as above, instead of entering the value, say
9000000000, enter 6000000000+3000000000, or 450000000*2, etc. Do you
notice any differences in output?

3. For any of the values to be input, replace them with a string. For instance
enter "Al Gore" when it prompts you for a number. What happens?

6. Rewrite your solution to Exercise 4 from the previous chapter to use the
program structure described above.

7. You were introduced to the rules of naming in Python. You may have
noticed that we have made extensive use of mixed case in naming some
entities. For example, waitTime. There are several naming conventions used
by programmers and that has led to an interesting culture in of itself. Look up
the phrase CamelCase controversy in your favorite search engine to learn
about naming conventions. For an interesting article on this, see The
Semicolon Wars
(http://www.americanscientist.org/template/AssetDetail/assetid/51982).

8. Experiment with the speak function introduced in this chapter. Try giving
it a number to speak (try both integers and floating point numbers). What is
the largest integer value that it can speak? What happens when this limit is
exceeded? Try to give the speak function a list of numbers, or strings, or
both.

Exercise 9. Write a Python program that sings the ABC song: ABCD…XYZ.
Now I know my ABC’s. Next time won’t you sing with me?

