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COMPUTING EXPONENTIALS OF

SKEW-SYMMETRIC MATRICES AND

LOGARITHMS OF ORTHOGONAL MATRICES
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Abstract

The authors show that there is a generalization of Rodrigues’ formula
for computing the exponential map exp: so(n)→SO(n) from skew-
symmetric matrices to orthogonal matrices when n ≥ 4, and give
a method for computing some determination of the (multivalued)
function log: SO(n) → so(n). The key idea is the decomposition of a
skew-symmetric n×n matrix B in terms of (unique) skew-symmetric
matrices B1, . . . , Bp obtained from the diagonalization of B and
satisfying some simple algebraic identities. A subproblem arising in
computing logR, where R∈SO(n), is the problem of finding a skew-
symmetric matrix B, given the matrix B2, and knowing that B2 has
eigenvalues −1 and 0. The authors also consider the exponential map
exp: se(n)→SE(n), where se(n) is the Lie algebra of the Lie group
SE(n) of (affine) rigid motions. The authors show that there is a
Rodrigues-like formula for computing this exponential map, and give
a method for computing some determination of the (multivalued)
function log: SE(n) → se(n). This yields a direct proof of the
surjectivity of exp: se(n)→SE(n).
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1. Introduction

Given a real skew-symmetric n × n matrix B, it is well
known that R = eB is a rotation matrix, where:

eB = In +
∞∑

k=1

Bk

k!

is the exponential of B (for instance, see Chevalley [1],
Marsden and Ratiu [2], or Warner [3]). Conversely, given
any rotation matrix R ∈ SO(n), there is some skew-
symmetric matrix B such that R = eB . These two facts can
be expressed by saying that the map exp: so(n)→SO(n)
from the Lie algebra so(n) of skew-symmetric n× n matri-
ces to the Lie group SO(n) is surjective (see Bröcker and
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tom Dieck [4]). The surjectivity of exp is an important
property. Indeed, it implies the existence of a function log:
SO(n) → so(n) (only locally a function, log is really a mul-
tivalued function), and this has interesting applications.
For example, exp and log can be used for motion interpo-
lation, as illustrated in Kim, M.-J., Kim, M.-S and Shin
[5, 6], and Park and Ravani [7, 8]. Motion interpolation
and rational motions have also been investigated by Jüttler
[9, 10], Jüttler andWagner [11, 12], Horsch and Jüttler [13],
and Röschel [14]. In its simplest form, the problem is as
follows: given two rotation matrices R1, R2 ∈ SO(n), find
a “natural” interpolating rotation R(t), where 0 ≤ t ≤ 1.
Of course, it would be necessary to clarify what we mean
by “natural,” but note that we have the following solution:

R(t) = exp((1− t)logR1 + t logR2)

In theory, the problem is solved. However, it is still
necessary to compute exp(B) and logR effectively.

When n = 2, a skew-symmetric matrix B can be
written as B = θJ , where:

J =



0 −1

1 0





and it is easily shown that:

eB = eθJ = cos θI2 + sin θJ

Given R ∈ SO(2), we can find cos θ because tr(R) = 2 cos θ
(where tr(R) denotes the trace of R). Thus, the problem is
completely solved.

When n = 3, a real skew-symmetric matrix B is of the
form:

B =





0 −c b

c 0 −a

−b a 0





and letting θ =
√
a2 + b2 + c2, we have the well-known

formula due to Rodrigues:

eB = I3 +
sin θ

θ
B +

(1− cos θ)

θ2
B2
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with eB = I3 when B = 0 (for instance, see Marsden and
Ratiu [2], McCarthy [15], or Murray, Li, and Sastry [16]).

It turns out that it is more convenient to normalize B,
that is, to write B = θB1 (where B1 = B/θ, assuming that
θ �= 0), in which case the formula becomes:

eθB1 = I3 + sin θB1 + (1− cos θ)B2
1

Also, given R ∈ SO(3), we can find cos θ because tr(R) =
1 + 2 cos θ, and we can find B1 by observing that:

1
2 (R−Rᵀ) = sin θB1

Actually, the above formula cannot be used when θ = 0 or
θ = π, as sin θ = 0 in these cases. When θ = 0, we have
R = I3 and B1 = 0, and when θ = π, we need to find B1

such that:

B2
1 = 1

2 (R− I3)

As B1 is a skew-symmetric 3 × 3 matrix, this amounts
to solving some simple equations with three unknowns.
Again, the problem is completely solved.

What about the cases where n ≥ 4? The reason why
Rodrigues’ formula can be derived is that:

B3 = −θ2B

or, equivalently, B3
1 = −B1. Unfortunately, for n ≥ 4,

given any non-null skew-symmetric n × n matrix B, it is
generally false that B3 = −θ2B, and the reasoning used in
the 3D case does not apply.

In this article, we show that there is a generalization
of Rodrigues’ formula for computing the exponential map
exp: so(n)→SO(n), when n ≥ 4, and we give a method
for computing some determination of the (multivalued)
function log function log: SO(n)→ so(n). The key to the
solution is that, given a skew-symmetric n × n matrix B,
there are p unique skew-symmetric matrices B1, . . . , Bp

such that B can be expressed as:

B = θ1B1 + · · ·+ θpBp

where:

{iθ1,−iθ1, . . . , iθp,−iθp}
is the set of distinct eigenvalues of B, with θi > 0 and
where:

BiBj = BjBi = 0n (i �= j)

B3
i = −Bi

This reduces the problem to the case of 3× 3 matrices.
We also consider the exponential map exp se(n)→SE(n),
where se(n) is the Lie algebra of the Lie group SE(n) of
(affine) rigid motions. We show that there is a Rodrigues-
like formula for computing this exponential map, and we
give a method for computing some determination of the
(multivalued) function log: SE(n)→ se(n).

The general problem of computing the exponential of
a matrix is discussed in Moler and Van Loan [17]. However,
more general types of matrices are considered. The problem

of computing the logarithm and the exponential of a matrix
is also investigated in [18, 19].

The article is organized as follows. In Section 2
we give a Rodrigues-like formula for computing exp:
so(n)→SO(n). In Section 3 we show how to compute
log: SO(4)→ so(4) in the special case of SO(4), which is
simpler. In Section 4 we show how to compute some deter-
mination of the (multivalued) function log: SO(n)→ so(n)
in general (n ≥ 4). In Section 5 we give a Rodrigues-like
formula for computing exp: se(n)→SE(n). In Section 6 we
show how to compute some determination of the (multi-
valued) function log: SE(n)→ se(n). Our method yields a
simple proof of the surjectivity of exp: se(n)→SE(n). In
Section 7 we solve the problem of finding a skew-symmetric
matrix B, given the matrix B2, and knowing that B2 has
eigenvalues −1 and 0. Section 8 draws conclusions.

2. A Rodrigues-Like Formula for
exp: so(n) →SO(n)

In this section, we give a Rodrigues-like formula showing
how to compute the exponential eB of a skew-symmetric
n×n matrix B, where n ≥ 4. We also show the uniqueness
of the matrices B1, . . . , Bp used in the decomposition of
B mentioned in the introductory section. The following
fairly well-known lemma plays a key role in obtaining the
matrices B1, . . . , Bp (see Horn and Johnson [20], Corollary
2.5.14, or Bourbaki [21]).

Lemma 2.1. Given any skew-symmetric n×n matrix B
(n ≥ 2), there is some orthogonal matrix P and some block
diagonal matrix E such that:

B = PEP ᵀ

with E of the form:

E =





E1 · · ·
...

. . .
...

· · · Em

· · · 0n−2m





where each block Ei is a real two-dimensional matrix of
the form:

Ei =



 0 −θi

θi 0



 = θi



0 −1

1 0



 with θi > 0

Observe that the eigenvalues of B are±iθj , or 0, recon-
firming the well-known fact that the eigenvalues of a
skew-symmetric matrix are purely imaginary, or null. We
now prove the existence and uniqueness of the Bj ’s as well
as the generalized Rodrigues’ formula.

Theorem 2.2. Given any non-null skew-symmetric n×n
matrix B, where n ≥ 3, if:

{iθ1,−iθ1, . . . , iθp,−iθp}
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is the set of distinct eigenvalues of B, where θj > 0 and
each iθj (and −iθj) has multiplicity kj ≥ 1, there are p
unique skew-symmetric matrices B1, . . . , Bp such that:

B = θ1B1 + · · ·+ θpBp (1)

BiBj = BjBi = 0n (i �= j) (2)

B3
i = −Bi (3)

for all i, j with 1 ≤ i, j ≤ p, and 2p ≤ n. Furthermore:

eB = eθ1B1+···+θpBp = In +

p∑

i=1

(sin θiBi + (1− cos θi)B
2
i )

and {θ1, . . . , θp} is the set of the distinct positive square
roots of the 2m positive eigenvalues of the symmetric
matrix −1/4(B −Bᵀ)2, where m = k1 + · · ·+ kp.

Proof. By Lemma 2.1, the matrix B can be written
as:

B = PEP ᵀ

whereE is a block diagonal matrix consisting ofm non-zero
blocks of the form:

Ei = θi



0 −1

1 0



 with θi > 0

If:

{iθ1,−iθ1, . . . , iθp,−iθp}

is the set of distinct eigenvalues of B, where θj > 0, for
every j, there is a non-empty set:

Sj = {i1, . . . , ikj}

of indices (in the set {1, . . . ,m}) corresponding to all
the blocks Ej in which θj occurs. Let Fj be the matrix
obtained by zeroing from E the blocks Ek, where k /∈ Sj .
By factoring θj in Fj , we have:

Fj = θjGj

and we let:

Bj = PGjP
ᵀ

It is obvious by construction that the three equations
(1)–(3) hold.

As Bi and Bj commute for all i, j, we have:

eB = eθ1B1+···+θpBp = eθ1B1 · · · eθpBp

However, using:

B3
i = −Bi

as in the 3× 3 case, we can show that:

eθiBi = In + sin θiBi + (1− cos θi)B
2
i

Indeed, B3
i = −Bi implies that:

B4k+j
i = Bj

i and B4k+2+j
i = −Bj

i

for j = 1, 2 and all k ≥ 0

and thus, we get:

eθiBi = In +
∑

k≥1

θki B
k
i

k!

= In +

(
θi
1!

− θ3i
3!

+
θ5i
5!

+ · · ·
)
Bi

+

(
θ2i
2!

− θ4i
4!

+
θ6i
6!

+ · · ·
)
B2

i

= In + sin θiBi + (1− cos θi)B
2
i

Since:

BiBj = BjBi = 0n (i �= j)

we get:

eB =

p∏

i=1

eθiBi =
m∏

i=1

(In + sin θiBi + (1− cos θi)B
2
i )

= In +

p∑

i=1

(sin θiBi + (1− cos θi)B
2
i )

The matrix 1/4(B−Bᵀ)2 is of the form PE2P ᵀ, where:

E2
i =



−θ2i 0

0 −θ2i





Thus, the eigenvalues of −1/4(B −Bᵀ)2 are:

(θ21, θ
2
1, . . . , θ

2
m, θ2m, 0, . . . , 0︸ ︷︷ ︸

n−2m

)

and thus (θ1, . . . , θm) are the positive square roots of the
eigenvalues of the symmetric matrix −1/4(B −Bᵀ)2.

We now prove the uniqueness of the Bj ’s. If we assume
that matrices Bj ’s with the required properties exist, using
the properties of the Bj ’s, we get the system:

B =

p∑

i=1

θiBi

B3 = −
p∑

i=1

θ3iBi

B5 =

p∑

i=1

θ5iBi (4)

...
...

B2p−1 = (−1)p−1
p∑

i=1

θ2p−1
i Bi
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The determinant of this system is:

δn =





θ1 θ2 · · · θp

−θ31 −θ32 · · · −θ3p
...

...
. . .

...

(−1)p−1θ2p−1
1 (−1)p−1θ2p−1

2 · · · (−1)p−1θ2p−1
p





Observe that the above matrix is the product of the
diagonal matrix:

diag(1,−1, 1,−1, . . . , 1, (−1)p−1)

by the matrix:
(

p∏

i=1

θi

)
V (θ21, . . . , θ

2
p)

where V (θ21, . . . , θ
2
p) is a Vandermonde matrix. Therefore,

the determinant δn can be immediately computed, and we
get:

δn = (−1)p(p−1)/2
p∏

i=1

θi
∏

1≤i<j≤p

(θ2j − θ2i )

Since the θi’s are positive and all distinct, δn �= 0. Thus,
B1, . . . , Bp are uniquely determined from B and its non-
null eigenvalues. �

Given a skew-symmetric n × n matrix B, we can
compute θ1, . . . , θp and B1, . . . , Bp as follows. By Theo-
rem 2.2 θ21, . . . , θ

2
p are the distinct non-null eigenvalues of

the symmetric matrix−1/4(B−Bᵀ)2, and there are several
numerical methods for computing eigenvalues of symmetric
matrices (see Golub and Van Loan [22] or Trefethen and
Bau [23]). Then, we find B1, . . . , Bp by solving the linear
system (4) used in the proof of Theorem 2.2.

Note that Bj has the eigenvalues i,−i, each with
multiplicity kj , and 0 with multiplicity n− 2kj . Now recall
the following structure lemma for rotations in SO(n) (e.g.,
see Berger [24] or Horn and Johnson [20], Corollary 2.5.14).

Lemma 2.3. For every rotation matrixR∈SO(n), there
is a block diagonal matrix D and an orthogonal matrix P
such that:

R = PDP ᵀ

where D is a block diagonal matrix of the form:

D =





D1 · · ·
...

. . .
...

· · · Dm

· · · In−2m





where the first m blocks Di are of the form:

Di =



cos θi − sin θi

sin θi cos θi



 with 0 < θi ≤ π

Using the surjectivity of the exponential map exp:
so(n)→SO(n), which easily follows from Lemma 2.1,
Lemma 2.3 and the fact that if:

Ei =



 0 −θi

θi 0





then

eEi =



cos θi − sin θi

sin θi cos θi





and we obtain the following characterization of rotations
in SO(n), where n ≥ 3:

Lemma 2.4. Given any rotation matrix R∈SO(n),
where n ≥ 3, if:

{eiθ1 , e−iθ1 , . . . , eiθp , e−iθp}
is the set of distinct eigenvalues of R different from 1,
where 0 < θi ≤ π, there are p skew symmetric matrices
B1, . . . , Bp such that:

BiBj = BjBi = 0n (i �= j)

B3
i = −Bi

for all i, j with 1 ≤ i, j ≤ p, and 2p ≤ n, and furthermore:

R = eθ1B1+···+θpBp = In +

p∑

i=1

(sin θiBi + (1− cos θi)B
2
i )

Lemma 2.4 implies that:

{cos θ1, . . . , cos θp}
is the set of eigenvalues of the symmetric matrix
1/2(R+Rᵀ) that are different from 1. However, the matri-
ces B1, . . . , Bp are not necessarily unique. This has to do
with the fact that we may have sin θi = 0 when θi = π.
Nevertheless, it is possible to find B1, . . . , Bp from R. We
begin with the case n = 4, as it is simpler.

3. Computing log: SO(4)→so(4)

By Theorem 2.2, a rotation matrix for n = 4 is given by:

R = I4 + sin θ1B1 + (1− cos θ1)B
2
1

or

R = I4 + sin θ1B1 + sin θ2B2 + (1− cos θ1)B
2
1

+ (1− cos θ2)B
2
2

where B1 and B2 are all 4 × 4 skew-symmetric matrices,
and:

B1B2 = B2B1 = 0

B3
1 = −B1

B3
2 = −B2
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The first case in which iθ1 has multiplicity 2 is analo-
gous to the case of a rotation in SO(3). We can compute
cos θ1 easily because:

tr(R) = 4 cos θ1

The case θ1 = π requires computing B1 from B2
1 . This

subproblem is solved in Section 7.
In the second case, θ1 �= θ2, with 0 < θi ≤ π. This is

analogous to the case of a rotation in SO(3).
In all cases, we know that cos θ1 and cos θ2 are double

eigenvalues of 1/2(R + Rᵀ), but we can easily compute
cos θ1 + cos θ2 and cos θ1 cos θ2, and cos θ1 and cos θ2 are
the roots of a quadratic equation that will be found
explicitly.

The properties of the Bi’s immediately imply that:

R2 = I4 + sin 2θ1B1 + sin 2θ2B2 + (1− cos 2θ1)B
2
1

+ (1− cos 2θ2)B
2
2

As B1 and B2 are skew-symmetric, we get:

1
2 (R−Rᵀ) = sin θ1B1 + sin θ2B2

1
2 (R

2 −R2ᵀ) = sin 2θ1B1 + sin 2θ2B2

tr(R) = 2 cos θ1 + 2 cos θ2

We first look at the special cases in which sin θ1 = 0 or
sin θ2 = 0. Assume that θ1 = π and θ2 �= π, the case where
θ1 �= π and θ2 = π being similar. Then we get:

1
2 (R−Rᵀ) = sin θ2B2

from which we can compute B2. We can now compute B2
1

from:

1
2 (R+Rᵀ) = 2B2

1 + (1− cos θ2)B
2
2

Finally, we have to compute B1 from B2
1 . This subproblem

is solved in Section 7.
We may now assume that sin θi �= 0, for i = 1, 2. We

show the following proposition:

Proposition 3.1. The numbers cos θ1 and cos θ2 are
solutions of the equation x2 − px+ q = 0, where:

p = cos θ1 + cos θ2 = 1
2 tr(R)

q = cos θ1 cos θ2 = 1
8 tr(R)2 − 1

16 tr((R−Rᵀ)2)− 1

Proof. We know that:

1
2 (R−Rᵀ) = sin θ1B1 + sin θ2B2

and:

tr(B2
1) = −2 tr(B2

2) = −2

Therefore, some algebra yields:

1
4 tr((R−Rᵀ)2) = 2 cos2 θ1 + 2 cos2 θ2 − 4

As we also know that:

tr(R) = 2 cos θ1 + 2 cos θ2

we easily get the desired expression for p = cos θ1 + cos θ2
and q = cos θ1 cos θ2.

Note in passing that we also have:

cos2 θ1 cos
2 θ2 = det

(
1
2 (R+Rᵀ)

)

which is the product of the eigenvalues.
Consider the system:

1
2 (R−Rᵀ) = sin θ1B1 + sin θ2B2

1
2 (R

2 −R2ᵀ) = sin 2θ1B1 + sin 2θ2B2

The determinant of the above system is:

2 sin θ1 sin θ2(cos θ2 − cos θ1)

As we assumed that sin θi �= 0 and 0 < θi < π for i = 1, 2,
we have cos θ2 �= cos θ1, and the system has a unique
solution for B1 and B2. �

4. Computing log: SO(n)→so(n)

Given an orthogonal matrix R ∈ SO(n), we would like to
find a logarithm of R, that is, some skew-symmetric matrix
B such that R = eB . By Theorem 2.2 and Lemma 2.4, we
know that we can look for a matrix:

B = θ1B1 + · · ·+ θpBp

where:

{iθ1,−iθ1, . . . , iθp,−iθp}
is the set of distinct eigenvalues of B, with 0 < θi ≤ π, and
B1, . . . , Bp are skew matrices such that:

BiBj = BjBi = 0n (i �= j)

B3
i = −Bi

for all i, j with 1 ≤ i, j ≤ p and 2p ≤ n. Then, we have:

R = eθ1B1+···+θpBp = In +

p∑

i=1

(sin θiBi + (1− cos θi)B
2
i )

As we observed earlier:

{cos θ1, . . . , cos θp}
is the set of eigenvalues of the symmetric matrix
1/2 (R+Rᵀ) that are different from 1. Furthermore,
{cos θ1, . . . , cos θp} can be computed as the set of eigenval-
ues of the symmetric matrix 1/2 (R+Rᵀ) that are different
from 1. The question is, how can we compute B1, . . . , Bp?

Since

R = eθ1B1+···+θpBp

we get:

Rj = ejθ1B1+···+jθpBp

and thus:

Rj = In +

p∑

i=1

sin jθiBi +

p∑

i=1

(1− cos jθi)B
2
i

5



Then, we get the system:

1
2 (R−Rᵀ) =

p∑

i=1

sin θiBi

1
2 (R

2 −R2ᵀ) =
p∑

i=1

sin 2θiBi

1
2 (R

3 −R3ᵀ) =
p∑

i=1

sin 3θiBi

...
...

1
2 (R

p −Rpᵀ) =
p∑

i=1

sin pθiBi

As we will prove shortly, the determinant:

δ′p =





sin θ1 sin θ2 · · · sin θp

sin 2θ1 sin 2θ2 · · · sin 2θp
...

...
. . .

...

sin pθ1 sin pθ2 · · · sin pθp




(5)

of this system is given by the formula:

δ′p = 2p(p−1)/2
p∏

i=1

sin θi
∏

1≤i<j≤p

(cos θj − cos θi)

When 0 < θi < π for i = 1, . . . , p, the determinant δ′p is
non-null. On the other hand, −1 is an eigenvalue of R iff
θj = π for some j. Without loss of generality, we may
assume that θp = π iff −1 is an eigenvalue of R, and we get
the following theorem.

Theorem 4.1. Given any rotation matrix R ∈ SO(n),
where n ≥ 3, let:

{eiθ1 , e−iθ1 , . . . , eiθp , e−iθp}

be the set of distinct eigenvalues of R different from 1,
where 0 < θi ≤ π. Then, there are p skew-symmetric
matrices B1, . . . , Bp such that:

BiBj = BjBi = 0n (i �== j)

B3
i = −Bi

for all i, j, with 1 ≤ i, j ≤ p, and 2p ≤ n, and:

R = eθ1B1+···+θpBp

so that:

B = θ1B1 + · · ·+ θpBp

is a logarithm of R. Furthermore, if −1 is not an eigenvalue
of R, the matrices B1, . . . , Bp are unique, and if −1 is an
eigenvalue of R, the matrices B1, . . . , Bp−1 are unique and
the skew-symmetric square root of B2

p can be determined
using the method of Section 7.

Proof. First, assume that −1 is not an eigenvalue of
R, so that θp �= π. We observed earlier that the determinant
of the system determining B1, . . . , Bp is:

δ′p =





sin θ1 sin θ2 · · · sin θp

sin 2θ1 sin 2θ2 · · · sin 2θp
...

...
. . .

...

sin pθ1 sin pθ2 · · · sin pθp





Thus, we need to compute δ′n.
From the identity:

(cos θ + i sin θ)n = cosnθ + i sinnθ

we get:

sinnθ = sin θ







 n

1



 cosn−1 θ −


 n

3



 cosn−3 θ sin2 θ

+



 n

5



 cosn−5 θ sin4 θ + · · ·




As all the powers of sin θ in the sum are even, using the
fact that cos2 θ+sin2 θ = 1, we can express the sum within
the parentheses in terms of cos θ only, so that:

sinnθ = sin θ(an−1 cos
n−1 θ + an−3 cos

n−3 θ + · · · )
Similarly:

cosnθ =cosn θ −


 n

2



 cosn−2 θ sin2 θ

+



 n

4



 cosn−4 θ sin4 θ + · · ·

so that cosnθ can be expressed in terms of cos θ only, and
we get:

cosnθ = bn cos
n θ + bn−2 cos

n−2 θ + · · ·
We claim that:

an−1 = bn = 2n−1

This is easily shown by induction using the identities:

sin(n+ 1)θ = sinnθ cos θ + cosnθ sin θ

and:

cos(n+ 1)θ = cosnθ cos θ − sinnθ sin θ

Now, if we look at the determinant:

δ′p =





sin θ1 sin θ2 · · · sin θp

sin 2θ1 sin 2θ2 · · · sin 2θp
...

...
. . .

...

sin pθ1 sin pθ2 · · · sin pθp




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and express each sin jθk using:

sin jθk = sin θk
(
2j−1 cosj−1 θk + sj(cos θk)

)

where sj(X) is a polynomial of degree j − 3, we can factor
sin θk from each column, and we get a determinant where
the jth row is of the form:

2j−1 cosj−1 θ1 + sj(cos θ1) · · ·
2j−1 cosj−1 θp + sj(cos θp)

and where the first row is:

1 · · · 1

Then, we can cancel all constant terms in rows 2, . . . , p
by subtracting some appropriate multiple of the first row;
every term of degree 1 in rows 3, . . . , p by subtracting
some appropriate multiple of the second row; every term of
degree 2 in rows 4, . . . , p by subtracting some appropriate
multiple of the third row; and so on, so that in the
end we get the product of the Vandermonde determinant
V (cos θ1, . . . , cos θp) by the determinant of the diagonal
matrix:

diag(1, 2, 22, . . . , 2p−1)

The result is indeed:

δ′p = 2p(p−1)/2
p∏

i=1

sin θi
∏

1≤i<j≤p

(cos θj − cos θi)

Under the assumptions of the theorem, namely, 0 < θj < π
and θi �= θj for i �= j, we have δ′p �= 0.

When −1 is an eigenvalue of R, we have θp = π. In
this case, sin θp = 0, and the above system involves only
B1, . . . , Bp−1, which are uniquely determined because the
determinant δ′p−1 is non-null. Finally, because:

1
2 (R+Rᵀ) = In +

p∑

i=1

(1− cos θi)B
2
i

with θp = π, we get:

B2
p = 1

4 (R+Rᵀ)− 1
2

(
In +

p−1∑

i=1

(1− cos θi)B
2
i

)

and we can compute Bp given B2
p using the method

presented in Section 7. Thus:

B = θ1B1 + · · ·+ θpBp

is a logarithm of R. �

5. A Rodrigues-Like Formula for
exp: se(n)→ SE(n)

In this section, we give a Rodrigues-like formula showing
how to compute the exponential eΩ of an element Ω of the
Lie algebra se(n) of the Lie group SE(n) of (affine) rigid
motions, where n ≥ 3.

First, we review the usual way of representing affine
maps of R

n in terms of (n+ 1)× (n+ 1) matrices.

Definition 5.1. The set of affine maps ρ of R
n defined

such that:

ρ(X) = RX + U

where R is a rotation matrix (R ∈ SO(n)) and U is some
vector in R

n, is a group under composition called the group
of direct affine isometries, or rigid motions, denoted as
SE(n).

Every rigid motion can be represented by the (n+1)×
(n+ 1) matrix:



R U

0 1





in the sense that:


 ρ(X)

1



 =



R U

0 1







X

1





iff

ρ(X) = RX + U

Definition 5.2. The vector space of real (n+1)×(n+1)
matrices of the form:

Ω =



B U

0 0





where B is a skew-symmetric matrix and U is a vector in
R

n is denoted as se(n).
The group SE(n) is a Lie group, and se(n) is its

Lie algebra. In order to give a Rodrigues-like formula for
computing the exponential map exp: se(n) → SE(n), we
need the following key lemma.

Lemma 5.3. Given any (n + 1) × (n + 1) matrix of the
form:

Ω =



B U

0 0





where B is any matrix and U ∈R
n, we have:

eΩ =



eB V U

0 1





where:

V = In +
∑

k≥1

Bk

(k + 1)!

Proof. A trivial induction on k. �

Observing that:

V = In +
∑

k≥1

Bk

(k + 1)!
=

∫ 1

0
eBtdt

we can now prove our main result.
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Theorem 5.4. Given any (n+1)× (n+1) matrix of the
form:

Ω =



B U

0 0





where B is a non-null skew-symmetric matrix and U ∈ R
n,

with n ≥ 3, if:

{iθ1,−iθ1, . . . , iθp,−iθp}
is the set of distinct eigenvalues of B, where θi > 0, there
are p unique skew-symmetric matricesB1, . . . , Bp such that
the three equations (1)–(3) hold. Furthermore:

eΩ =



eB V U

0 1





where:

eB = In +

p∑

i=1

(sin θiBi + (1− cos θi)B
2
i )

and:

V = In +

p∑

i=1

(
(1− cos θi)

θi
Bi +

(θi − sin θi)

θi
B2

i

)

Proof. The existence and uniqueness of B1, . . . , Bp

and the formula for eB come from Theorem 2.2. Since:

V = In +
∑

k≥1

Bk

(k + 1)!
=

∫ 1

0
eBt dt

we have:

V =

∫ 1

0

[
In +

p∑

i=1

(
sin tθiBi + (1− cos tθi)B

2
i

)
]
dt

=

[
tIn +

p∑

i=1

(
−cos tθi

θi
Bi +

(
t− sin tθi

θi

)
B2

i

)]1

0

= In +

p∑

i=1

(
(1− cos θi)

θi
Bi +

(θi − sin θi)

θi
B2

i

)

�

Remark. Given:

Ω =



B U

0 0





where B = θ1B1 + · · ·+ θpBp, if we let:

Ωi =



Bi U/θi

0 0





using the fact that B3
i = −Bi and:

Ωk
i =



Bk
i Bk−1

i U/θi

0 0





it is easily verified that:

eΩ = In+1 +Ω+

p∑

i=1

(
(1− cos θi)Ω

2
i + (θi − sin θi)Ω

3
i

)

6. Computing log: SE(n)→se(n)

Given an element:

M =



R U

0 1





of SE(n), because R is a rotation matrix, we know from
Lemma 2.4 that if:

{eiθ1 , e−iθ1 , . . . , eiθp , e−iθp}

is the set of distinct eigenvalues of R different from 1,
where 0 < θi ≤ π, there are p skew-symmetric matrices
B1, . . . , Bp such that:

BiBj = BjBi = 0n (i �= j)

B3
i = −Bi

for all i, j with 1 ≤ i, j ≤ p, and 2p ≤ n, and furthermore:

R = eθ1B1+···+θpBp = In +

p∑

i=1

(
sin θiBi + (1− cos θi)B

2
i

)

We can also compute B1, . . . , Bp from R, as shown in
Section 4. Thus, if V is invertible, we have a method to
compute a log of M .

Using Theorem 5.4 we can prove that V is invertible.
This yields a fairly direct proof of the surjectivity of the
exponential map exp: se(n) → SE(n), and gives a method
for computing some determination of the (multivalued)
function the log function.

Theorem 6.1. The matrix:

V = In +

p∑

i=1

(
(1− cos θi)

θi
Bi +

(θi − sin θi)

θi
B2

i

)

from Theorem 5.4 is invertible.

Proof. Since:

V = In +

p∑

i=1

(
(1− cos θi)

θi
Bi +

(θi − sin θi)

θi
B2

i

)

Let us assume that the inverse of V is of the form:

W = In +

p∑

i=1

(
αiBi + βiB

2
i

)
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The condition VW = In is expressed as:

In = In +

p∑

i=1

(
(1− cos θi)

θi
Bi +

(θi − sin θi)

θi
B2

i

)

+

p∑

i=1

(
αiBi + βiB

2
i

)

+

p∑

i=1

(
(1− cos θi)αi

θi
B2

i − (1− cos θi)βi

θi
Bi

− (θi − sin θi)αi

θi
Bi − (θi − sin θi)βi

θi
B2

i

)

= In +

p∑

i=1

(
sin θiαi

θi
− (1− cos θi)βi

θi
+

(1− cos θi)

θi

)
Bi

+

p∑

i=1

(
(1− cos θi)αi

θi
+

sin θiβi

θi
+

(θi − sin θi)

θi

)
B2

i

Thus, we just have to solve the p systems of equations:

sin θiαi − (1− cos θi)βi = cos θi − 1

(1− cos θi)αi + sin θiβi = sin θi − θi

Since the determinant of the above matrix is:

sin2 θi + (1− cos θi)
2 = 2(1− cos θi)

and 0 < θi ≤ π, the matrix is invertible and the system
has a unique solution. In fact, αi and βi are given by:


 αi

βi



 =
1

2(1− cos θi)



 sin θi (1− cos θi)

−(1− cos θi) sin θi





×


 cos θi − 1

sin θi − θi





That is:

αi = −θi
2

βi = 1− θi sin θi
2(1− cos θi)

Therefore, the inverse of V is:

V −1 = In +

p∑

i=1

(
−θi

2
Bi +

(
1− θi sin θi

2(1− cos θi)

)
B2

i

)
�

Remark. This formula is equivalent to the formula
given in the Appendix of Murray, Li, and Sastry [16] in the
special case of SE(3). This is because:

θ sin θ

2(1− cos θ)
=

θ sin θ(1 + cos θ)

2(1− cos θ)(1 + cos θ)
=

θ(1 + cos θ)

2 sin θ

and thus:

1− θ sin θ

2(1− cos θ)
=

2 sin θ − θ(1 + cos θ)

2 sin θ

which is the expression found in Murray, Li, and Sastry
[16], except that our Bi’s are normalized. Note that this
expression is not well defined for θ = π. Our expression
does not suffer from this minor problem.

7. A Method for Computing B Given B2

As we saw in Section 4, in order to compute a logarithm
of an orthogonal matrix, it may be necessary to compute
a skew-symmetric matrix B given its square B2. Actually,
the eigenvalues of B’s are ±i, and this simplifies the
problem. We need to solve the following problem: find a
skew-symmetric matrix B such that A = B2 is a given
non-null symmetric matrix with eigenvalues −1 or 0, with
an even number of −1. It is slightly more convenient to
look for a skew-symmetric B, given A = −B2, as A is then
a non-null symmetric matrix with eigenvalues +1 and 0,
with an even number of +1. Since A is a symmetric matrix
whose eigenvalues are known, the problem can be solved by
diagonalizing A. Then, if A = PDP ᵀ, with P orthogonal,
as D has an even number of +1’s, we form E from D by
replacing every 2× 2-identity block I2 in D by:

J =



0 −1

1 0





and we let B = PEP ᵀ. Since J2 = −I2, we get:

E2 = −D

and then:

B2 = PEP ᵀPEP ᵀ = PE2P ᵀ = −PDP ᵀ = −A

Therefore, A = −B2, as desired. In principle, the problem
is solved. Actually, becuase the eigenvalues of A are special
(+1 and 0), a simple method based on the Gram–Schmidt
orthonormalization procedure can be designed, as we now
explain. As A = PDP ᵀ, where D is a diagonal matrix con-
sisting or 0’s and 1’s, we have A2 = A. As a consequence,
every non-null column U of A is an eigenvector of A for the
eigenvalue 1, that is, AU = U . Thus, we use the following
inductive method to diagonalize A.

If A = 0 (the null matrix), then B = 0. Otherwise,
proceed as follows. Let (e1, . . . , en) be any basis of R

n, for
instance, the canonical basis (where the ith entry of ei is
1, and all other entries are 0).

Let U1 be any non-null column of A (for instance,
the left-most non-null column). As U1 is non-null, let i be
the index of some non-null entry in U1 (for instance, the
least index i, or the least index such that the ith entry is
maximum). We now form the new basis:

(U1, e1, . . . , ei−1, ei+1, . . . , en)

obtained from (e1, . . . , en) by replacing ei by U1 and
reordering the vectors so that U1 is now the first vector.
This new basis is generally not orthonormal, and we apply
Gram–Schmidt (or any of its variants, such as modified
Gram–Schmidt; see Golub and Van Loan [22] or Trefethen
and Bau [23]) to get an orthonormal basis:

(U ′
1, e

′
1, . . . , e

′
i−1, e

′
i+1, . . . , e

′
n)

This basis defines an orthogonal matrix Q1, and we
compute:

A1 = Qᵀ
1AQ1

9



As U ′
1 is just U1 normalized to unit length, U ′

1 is an
eigenvector of A for the eigenvalue 1, and A1 is of the form:

A1 =



1 0

0 A′
1





We can now repeat the above procedure inductively on A′
1,

which is an (n − 1) × (n − 1) matrix. This will yield an
orthogonal (n− 1)× (n− 1) matrix Q′

2 such that:

D′ = Q′ᵀ
2 A′

1Q
′
2

where D′ is a diagonal (n− 1)× (n− 1) matrix of 0’s and
1’s. Then:

A′
1 = Q′

2D
′Q′ᵀ

2

and we form the orthogonal matrix:

Q2 =



1 0

0 Q′
2





and the diagonal matrix:

D =



1 0

0 D′





so that:

A1 = Q2DQᵀ
2

and we finally get:

A = QDQᵀ

where Q = Q1Q2.
In forming the matrix E, instead of using the matrix:

J =



0 −1

1 0





we can use the matrix K = −J , since we also have K2 =
−I2. This is the reason why B is not unique. In fact, if
A has the eigenvalue 1 with multiplicity 2q, there are 2q
possibilities for B (recall that we are looking for B such
that B2 = −A, where A is a non-null symmetric matrix
with eigenvalues +1 and 0, with an even number of +1).

8. Conclusion

In this work, we have given a generalization of
Rodrigues’ formula for computing the exponential map
exp: so(n)→SO(n) when n ≥ 4, and we have also given a
method for computing some determination of the (multi-
valued) function log function log: SO(n) → so(n). A sub-
problem arising in computing logR, where R ∈ SO(n), is
the problem of finding a skew-symmetric matrix B, given
the matrix B2, and knowing that B2 has eigenvalues −1
and 0. Technically, the key result is the decomposition

of a skew-symmetric n × n matrix B in terms of some
skew-symmetric matrices having some special properties.
We also showed that there is a Rodrigues-like formula for
computing this exponential map exp: se(n) → SE(n),
and we gave a method for computing some determination
of the (multivalued) function log: SE(n) → se(n). As a
corollary we obtained a direct proof of the surjectivity
of exp: se(n) → SE(n). The method for computing log:
SO(4)→ so(4) has been implemented. It has applications
to a locomotion problem, where the parameter space is
modelled by R

4 (see Sun, [25]). The problem of interpo-
lating between two rotations R1, R2 ∈ SO(4) comes up
naturally. Our methods can be used to perform motion
interpolation in SO(n) or SE(n) for fairly large n, but we
are unaware of practical applications for n ≥ 5. We are
hoping that such problems will arise in the future, perhaps
in robotics or even physics.
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